• Adams, J. C., 1989: mudpack: Multigrid portable Fortran software for the efficient solution of linear elliptic partial differential equations. Appl. Math. Comput., 34, 113146, https://doi.org/10.1016/0096-3003(89)90010-6.

    • Search Google Scholar
    • Export Citation
  • Allen, J. T., and D. Smeed, 1996: Potential vorticity and vertical velocity at the Iceland-Faeroes front. J. Phys. Oceanogr., 26, 26112634, https://doi.org/10.1175/1520-0485(1996)026<2611:PVAVVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, J. T., D. A. Smeed, A. J. G. Nurser, J. W. Zhang, and M. Rixen, 2001: Diagnosis of vertical velocities with the QG omega equation: A relocation method to obtain pseudo-synoptic data sets. Deep-Sea Res. I, 48, 13471373, https://doi.org/10.1016/S0967-0637(00)00085-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, J. T., and et al. , 2005: Diatom carbon export enhanced by silicate upwelling in the northeast Atlantic. Nature, 437, 728732, https://doi.org/10.1038/nature03948.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amores, A., G. Jordà, T. Arsouze, and J. Le Sommer, 2018: Up to what extent can we characterize ocean eddies using present-day gridded altimetric products? J. Geophys. Res. Oceans, 123, 72207236, https://doi.org/10.1029/2018JC014140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avicola, G. S., J. N. Moum, A. Perlin, and M. D. Levine, 2007: Enhanced turbulence due to the superposition of internal gravity waves and a coastal upwelling jet. J. Geophys. Res., 112, C06024, https://doi.org/10.1029/2006JC003831.

    • Search Google Scholar
    • Export Citation
  • Balwada, D., K. S. Smith, and R. Abernathey, 2018: Submesoscale vertical velocities enhance tracer subduction in an idealized Antarctic circumpolar current. Geophys. Res. Lett., 45, 97909802, https://doi.org/10.1029/2018GL079244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barceló-Llull, B., E. Mason, A. Capet, and A. Pascual, 2016: Impact of vertical and horizontal advection on nutrient distribution in the southeast Pacific. Ocean Sci., 12, 10031011, https://doi.org/10.5194/os-12-1003-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barceló-Llull, B., E. Pallàs-Sanz, P. Sangrà, A. Martínez-Marrero, S. N. Estrada-Allis, and J. Arístegui, 2017: Ageostrophic secondary circulation in a subtropical intrathermocline eddy. J. Phys. Oceanogr., 47, 11071123, https://doi.org/10.1175/JPO-D-16-0235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barceló-Llull, B., A. Pascual, E. Mason, and S. Mulet, 2018: Comparing a multivariate global ocean state estimate with high-resolution in situ data: An anticyclonic intrathermocline eddy near the Canary Islands. Front. Mar. Sci., 5, 66, https://doi.org/10.3389/fmars.2018.00066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bower, A., and T. Rossby, 1989: Evidence of cross-frontal exchange processes in the Gulf Stream based on isopycnal RAFOS float data. J. Phys. Oceanogr., 19, 11771190, https://doi.org/10.1175/1520-0485(1989)019<1177:EOCFEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyd, P. W., H. Claustre, M. Levy, D. A. Siegel, and T. Weber, 2019: Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature, 568, 327335, https://doi.org/10.1038/s41586-019-1098-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckingham, C. E., and et al. , 2016: Seasonality of submesoscale flows in the ocean surface boundary layer. Geophys. Res. Lett., 43, 21182126, https://doi.org/10.1002/2016GL068009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buongiorno Nardelli, B., 2013: Vortex waves and vertical motion in a mesoscale cyclonic eddy. J. Geophys. Res. Oceans, 118, 56095624, https://doi.org/10.1002/jgrc.20345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buongiorno Nardelli, B., 2020: A multi-year time series of observation-based 3D horizontal and vertical quasi-geostrophic global ocean currents. Earth Syst. Sci. Data, 12, 17111723, https://doi.org/10.5194/essd-12-1711-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buongiorno Nardelli, B., and R. Santoleri, 2005: Methods for the reconstruction of vertical profiles from surface data: Multivariate analyses, residual GEM, and variable temporal signals in the North Pacific Ocean. J. Atmos. Oceanic Technol., 22, 17621781, https://doi.org/10.1175/JTECH1792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buongiorno Nardelli, B., S. Guinehut, A. Pascual, Y. Drillet, S. Ruiz, and S. Mulet, 2012: Towards high resolution mapping of 3-d mesoscale dynamics from observations. Ocean Sci., 8, 885901, https://doi.org/10.5194/os-8-885-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buongiorno Nardelli, B., S. Mulet, and D. Iudicone, 2018: Three-dimensional ageostrophic motion and water mass subduction in the Southern Ocean. J. Geophys. Res. Oceans, 123, 15331562, https://doi.org/10.1002/2017JC013316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2018: Baroclinic instability in the presence of convection. J. Phys. Oceanogr., 48, 4560, https://doi.org/10.1175/JPO-D-17-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., P. Klein, B. L. Hua, G. Lapeyre, and J. C. McWilliams, 2008: Surface kinetic energy transfer in surface quasi-geostrophic flows. J. Fluid Mech., 604, 165174, https://doi.org/10.1017/S0022112008001110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., G. Roullet, P. Klein, and G. Maze, 2016: Intensification of upper-ocean submesoscale turbulence through Charney baroclinic instability. J. Phys. Oceanogr., 46, 33653384, https://doi.org/10.1175/JPO-D-16-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chenillat, F., B. Blanke, N. Grima, P. J. S. Franks X. Capet, and P. Rivière, 2015: Quantifying tracer dynamics in moving fluids: A combined Eulerian-Lagrangian approach. Front. Environ. Sci., 3, 43, https://doi.org/10.3389/fenvs.2015.00043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., and J.-M. Beckers, 2011: Introduction to Geophysical Fluid Dynamics. 2nd ed. International Geophysics Series, Vol. 101, Academic Press, 875 pp.

    • Crossref
    • Export Citation
  • D’Asaro, E. A., K. B. Winters, and R. C. Lien, 2004: Lagrangian estimates of diapycnal mixing in a simulated K–H instability. J. Atmos. Oceanic Technol., 21, 799809, https://doi.org/10.1175/1520-0426(2004)021<0799:LEODMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 1991: The frontogenetical forcing of secondary circulations. Part I: The duality and generalization of the Q vector. J. Atmos. Sci., 48, 497509, https://doi.org/10.1175/1520-0469(1991)048<0497:TFFOSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • d’Ovidio, F., and et al. , 2019: Frontiers in fine-scale in situ studies: Opportunities during the SWOT fast sampling phase. Front. Mar. Sci., 6, 168, https://doi.org/10.3389/fmars.2019.00168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducousso, N., J. Le Sommer, J. M. Molines, and M. Bell, 2017: Impact of the “Symmetric Instability of the Computational Kind” at mesoscale- and submesoscale-permitting resolutions. Ocean Modell., 120, 1826, https://doi.org/10.1016/j.ocemod.2017.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., 2011: A frontal challenge for climate models. Science, 332, 316317, https://doi.org/10.1126/science.1203632.

  • Fox-Kemper, B., R. Lumpkin, and F. O. Bryan, 2013: Lateral transport in the ocean interior. Ocean Circulation and Climate: A 21st Century Perspective, G. Siedler et al., Eds., International Geophysics Series, Vol. 103, Academic Press, 185–209.

    • Crossref
    • Export Citation
  • Fresnay, S., A. L. Ponte, S. Le Gentil, and J. Le Sommer, 2018: Reconstruction of the 3-D dynamics from surface variables in a high-resolution simulation of North Atlantic. J. Geophys. Res. Oceans, 123, 16121630, https://doi.org/10.1002/2017JC013400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furuichi, N., T. Hibiya, and Y. Niwa, 2008: Model-predicted distribution of wind-induced internal wave energy in the world’s oceans. J. Geophys. Res., 113, C09034, https://doi.org/10.1029/2008JC004768.

    • Search Google Scholar
    • Export Citation
  • Giordani, H., and S. Planton, 2000: Modeling and analysis of ageostrophic circulation over the Azores oceanic front during the SEMAPHORE experiment. Mon. Wea. Rev., 128, 22702287, https://doi.org/10.1175/1520-0493(2000)128<2270:MAAOAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giordani, H., and G. Caniaux, 2001: Sensitivity of cyclogenesis to sea surface temperature in the Northwestern Atlantic. Mon. Wea. Rev., 129, 12731295, https://doi.org/10.1175/1520-0493(2001)129<1273:SOCTSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giordani, H., G. Caniaux, and L. Prieur, 2005: A simplified 3D oceanic model assimilating geostrophic currents: Application to the POMME experiment. J. Phys. Oceanogr., 35, 628644, https://doi.org/10.1175/JPO2724.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giordani, H., L. Prieur, and G. Caniaux, 2006: Advanced insights into sources of vertical velocity in the ocean. Ocean Dyn., 56, 513524, https://doi.org/10.1007/s10236-005-0050-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 96869698, https://doi.org/10.1029/JC094iC07p09686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guinehut, S., A. L. Dhomps, G. Larnicol, and P. Y. Le Traon, 2012: High resolution 3-D temperature and salinity fields derived from in situ and satellite observations. Ocean Sci., 8, 845857, https://doi.org/10.5194/os-8-845-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlington, P. E., L. P. Van Roekel, B. Fox-Kemper, K. Julien, and G. P. Chini, 2014: Langmuir–submesoscale interactions: Descriptive analysis of multiscale frontal spindown simulations. J. Phys. Oceanogr., 44, 22492272, https://doi.org/10.1175/JPO-D-13-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helber, R. W., and R. H. Weisberg, 2001: Equatorial upwelling in the western pacific warm pool. J. Geophys. Res., 106, 89899003, https://doi.org/10.1029/2000JC000401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., R. T. Pierrehumbert, S. T. Garner, and K. L. Swanson, 1995: Surface quasi-geostrophic dynamics. J. Fluid Mech., 282, 120, https://doi.org/10.1017/S0022112095000012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horii, T., Y. Masumoto, I. Ueki, S. P. Kumar, and K. Mizuno, 2011: Intraseasonal vertical velocity variation caused by the equatorial wave in the central equatorial Indian Ocean. J. Geophys. Res., 116, C09005, https://doi.org/10.1029/2011JC007081.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1982: The Mathematical theory of frontogenesis. Annu. Rev. Fluid Mech., 14, 131151, https://doi.org/10.1146/annurev.fl.14.010182.001023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., I. Draghici, and H. C. Davies, 1978: A new look at the ω equation. Quart. J. Roy. Meteor. Soc., 104, 3138, https://doi.org/10.1002/qj.49710443903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isern-Fontanet, J., B. Chapron, G. Lapeyre, and P. Klein, 2006: Potential use of microwave sea surface temperatures for the estimation of ocean currents. Geophys. Res. Lett., 33, L24608, https://doi.org/10.1029/2006GL027801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jouanno, J., X. Capet, G. Madec, G. Roullet, and P. Klein, 2016: Dissipation of the energy imparted by mid-latitude storms in the Southern Ocean. Ocean Sci., 12, 743769, https://doi.org/10.5194/os-12-743-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., J. M. Toole, P. Klein, and L. N. Thomas, 2013: A near-inertial mode observed within a Gulf Stream warm-core ring. J. Geophys. Res. Oceans, 118, 17971806, https://doi.org/10.1002/jgrc.20141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., 2016: The vertical mode decomposition of surface and internal tides in the presence of a free surface and arbitrary topography. J. Phys. Oceanogr., 46, 37773788, https://doi.org/10.1175/JPO-D-16-0131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., B. L. Hua, G. Lapeyre, X. Capet, S. Le Gentil, and H. Sasaki, 2008: Upper Ocean turbulence from high-resolution 3D simulations. J. Phys. Oceanogr., 38, 17481763, https://doi.org/10.1175/2007JPO3773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., J. Isern-Fontanet, G. Lapeyre, G. Roullet, E. Danioux, B. Chapron, S. Le Gentil, and H. Sasaki, 2009: Diagnosis of vertical velocities in the upper ocean from high resolution sea surface height. Geophys. Res. Lett., 36, L12603, https://doi.org/10.1029/2009GL038359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., and A. Mahadevan, 2006: Estimating subsurface horizontal and vertical velocities from sea-surface temperature. J. Mar. Res., 64, 695721, https://doi.org/10.1357/002224006779367267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., 2009: What vertical mode does the altimeter reflect? On the decomposition in baroclinic modes and on a surface-trapped mode. J. Phys. Oceanogr., 39, 28572874, https://doi.org/10.1175/2009JPO3968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., and P. Klein, 2006a: Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory. J. Phys. Oceanogr., 36, 165176, https://doi.org/10.1175/JPO2840.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., and P. Klein, 2006b: Impact of the small-scale elongated filaments on the oceanic vertical pump. J. Mar. Res., 64, 835851, https://doi.org/10.1357/002224006779698369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., P. Klein, and B. L. Hua, 2006: Oceanic restratification forced by surface frontogenesis. J. Phys. Oceanogr., 36, 15771590, https://doi.org/10.1175/JPO2923.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leach, H., 1987: The diagnosis of synoptic-scale vertical motion in the seasonal thermocline. Deep-Sea Res., 34A, 20052017, https://doi.org/10.1016/0198-0149(87)90095-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., D. J. McGillicuddy, and L. A. Anderson, 2008: Nutrient flux into an intense deep chlorophyll layer in a mode-water eddy. Deep-Sea Res. II, 55, 11391160, https://doi.org/10.1016/j.dsr2.2008.02.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Sommer, J., E. P. Chassignet, and A. J. Wallcraft, 2018: Ocean circulation modeling for operational oceanography: Current status and future challenges. New Frontiers in Operational Oceanography, E. Chassignet et al., Eds., GODAE OceanView, 289–306, https://doi.org/10.17125/gov2018.ch12.

    • Crossref
    • Export Citation
  • Lévy, M., P. Klein, A. Tréguier, D. Iovino, G. Madec, S. Masson, and K. Takahashi, 2010: Modifications of gyre circulation by sub-mesoscale physics. Ocean Modell., 34, 115, https://doi.org/10.1016/j.ocemod.2010.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lévy, M., R. Ferrari, P. J. Franks, A. P. Martin, and P. Rivière, 2012a: Bringing physics to life at the submesoscale. Geophys. Res. Lett., 39, L14602, https://doi.org/10.1029/2012GL052756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lévy, M., L. Resplandy, P. Klein, G. Madec, A.-M. Tréguier, S. Masson, and K. Takahashi, 2012b: Large-scale impacts of submesoscale dynamics on phytoplankton: Local and remote effects. Ocean Modell., 43–44, 7793, https://doi.org/10.1016/j.ocemod.2011.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lévy, M., O. Jahn, S. Dutkiewicz, and M. J. Follows, 2014: Phytoplankton diversity and community structure affected by oceanic dispersal and mesoscale turbulence. Limnol. Oceanogr. Fluids Environ., 4, 6784, https://doi.org/10.1215/21573689-2768549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lévy, M., P. J. Franks, and K. S. Smith, 2018: The role of submesoscale currents in structuring marine ecosystems. Nat. Commun., 9, 4758, https://doi.org/10.1038/s41467-018-07059-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., and et al. , 2014: The LatMix summer campaign: Submesoscale stirring in the upper ocean. Bull. Amer. Meteor. Soc., 96, 12571279, https://doi.org/10.1175/BAMS-D-14-00015.1.

    • Search Google Scholar
    • Export Citation
  • Lindstrom, S. S., and R. D. Watts, 1994: Vertical motion in the Gulf Stream near 68°W. J. Phys. Oceanogr., 24, 23212333, https://doi.org/10.1175/1520-0485(1994)024<2321:VMITGS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindstrom, S. S., X. Qian, and D. R. Watts, 1997: Vertical motion in the Gulf Stream and its relation to meanders. J. Geophys. Res., 102, 84858503, https://doi.org/10.1029/96JC03498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, A. P., and K. J. Richards, 2001: Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy. Deep-Sea Res. II, 48, 757773, https://doi.org/10.1016/S0967-0645(00)00096-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., L. P. Graves, and M. T. Montgomery, 2003: A formal theory for vortex Rossby-waves and vortex evolution. Geophys. Astrophys. Fluid Dyn., 97, 275309, https://doi.org/10.1080/0309192031000108698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagai, T., A. Tandon, and D. L. Rudnick, 2006: Two-dimensional ageostrophic secondary circulation at ocean fronts due to vertical mixing and large-scale deformation. J. Geophys. Res., 111, C09038, https://doi.org/10.1029/2005JC002964.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. A., M. Lévy, J. Jouanno, X. Capet, S. Swart, and P. M. Monteiro, 2019: Iron supply pathways between the surface and subsurface waters of the Southern Ocean: From winter entrainment to summer storms. Geophys. Res. Lett., 46, 14 56714 575, https://doi.org/10.1029/2019GL084657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pallàs-Sanz, E., T. M. Johnston, and D. L. Rudnick, 2010: Frontal dynamics in a California Current System shallow front: 2. Mesoscale vertical velocity. J. Geophys. Res., 115, C12068, https://doi.org/10.1029/2010JC006474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pascual, A., D. Gomis, R. L. Haney, and S. Ruiz, 2004: A quasigeostrophic analysis of a meander in the Palamós Canyon: Vertical velocity, geopotential tendency, and a relocation technique. J. Phys. Oceanogr., 34, 22742287, https://doi.org/10.1175/1520-0485(2004)034<2274:AQAOAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pascual, A., S. Ruiz, B. Buongiorno Nardelli, S. Guinehut, D. Iudicone, and J. Tintoré, 2015: Net primary production in the Gulf Stream sustained by quasi-geostrophic vertical exchanges. Geophys. Res. Lett., 42, 441449, https://doi.org/10.1002/2014GL062569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pascual, A., and et al. , 2017: A multiplatform experiment to unravel meso- and submesoscale processes in an intense front (AlborEx). Front. Mar. Sci., 4, 39, https://doi.org/10.3389/fmars.2017.00039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauley, P. M., and S. J. Nieman, 1992: A comparison of quasigeostrophic and nonquasigeostrophic vertical motions for a model-simulated rapidly intensifying marine extratropical cyclone. Mon. Wea. Rev., 120, 11081134, https://doi.org/10.1175/1520-0493(1992)120<1108:ACOQAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pidcock, R., A. Martin, J. Allen, S. C. Painter, and D. Smeed, 2013: The spatial variability of vertical velocity in an Iceland basin eddy dipole. Deep-Sea Res. I, 72, 121140, https://doi.org/10.1016/j.dsr.2012.10.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinot, J.-M., J. Tintoré, and D.-P. Wang, 1996: A study of the omega equation for diagnosing vertical motions at ocean fronts. J. Mar. Res., 54, 239259, https://doi.org/10.1357/0022240963213358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., and L. A. Regier, 1992: Vorticity and vertical circulation at an ocean front. J. Phys. Oceanogr., 22, 609625, https://doi.org/10.1175/1520-0485(1992)022<0609:VAVCAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, and R. W. Schmitt, 1995: Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr., 25, 306328, https://doi.org/10.1175/1520-0485(1995)025<0306:FPOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ponte, A. L., and P. Klein, 2013: Reconstruction of the upper ocean 3D dynamics from high-resolution sea surface height. Ocean Dyn., 63, 777791, https://doi.org/10.1007/s10236-013-0611-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, P. Klein, J. Wang, H. Torres, L.-L. Fu, and D. Menemenlis, 2018: Seasonality in transition scale from balanced to unbalanced motions in the world ocean. J. Phys. Oceanogr., 48, 591605, https://doi.org/10.1175/JPO-D-17-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, P. Klein, H. Torres, J. Wang, L. L. Fu, and D. Menemenlis, 2020: Reconstructing upper ocean vertical velocity field from sea surface height in the presence of unbalanced motion. J. Phys. Oceanogr., 50, 5579, https://doi.org/10.1175/JPO-D-19-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rixen, M., J. Beckers, and J. T. Allen, 2001: Diagnosis of vertical velocities with the QG Omega equation: A relocation method to obtain pseudo-synoptic data sets. Deep-Sea Res. I, 48, 13471373, https://doi.org/10.1016/S0967-0637(00)00085-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rixen, M., J. T. Allen, R. T. Pollard, and J.-M. Beckers, 2003: Along or across front ocean survey strategy? The estimation of quasi-geostrophic vertical velocities and temperature fluxes. Geophys. Res. Lett., 30, 1264, https://doi.org/10.1029/2002GL015810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rocha, C. B., A. Tandon, I. C. Da Silveira, and J. A. M. Lima, 2013: Traditional quasi-geostrophic modes and surface quasi-geostrophic solutions in the Southwestern Atlantic. J. Geophys. Res. Oceans, 118, 27342745, https://doi.org/10.1002/jgrc.20214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rousselet, L., and et al. , 2019: Vertical motions and their effects on a biogeochemical tracer in a cyclonic structure finely observed in the Ligurian Sea. J. Geophys. Res. Oceans, 124, 35613574, https://doi.org/10.1029/2018JC014392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., 1996: Intensive surveys of the Azores Front: 2. Inferring the geostrophic and vertical velocity fields. J. Geophys. Res., 101, 16 29116 303, https://doi.org/10.1029/96JC01144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruiz, S., A. Pascual, B. Garau, I. Pujol, and J. Tintoré, 2009: Vertical motion in the upper ocean from glider and altimetry data. Geophys. Res. Lett., 36, L14607, https://doi.org/10.1029/2009GL038569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shcherbina, A. Y., E. A. D’Asaro, C. M. Lee, J. M. Klymak, M. J. Molemaker, and J. C. McWilliams, 2013: Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophys. Res. Lett., 40, 47064711, https://doi.org/10.1002/grl.50919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shearman, R. K., J. A. Barth, J. S. Allen, and R. L. Haney, 2000: Diagnosis of the three-dimensional circulation in mesoscale features with large Rossby number. J. Phys. Oceanogr., 30, 26872709, https://doi.org/10.1175/1520-0485(2001)031<2687:DOTTDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siegelman, L., P. Klein, P. Rivière, A. F. Thompson, H. S. Torres, M. Flexas, and D. Menemenlis, 2020: Enhanced upward heat transport at deep submesoscale ocean fronts. Nat. Geosci., 13, 5055, https://doi.org/10.1038/s41561-019-0489-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. M., P. E. Hamlington, and B. Fox-Kemper, 2016: Effects of submesoscale turbulence on ocean tracers. J. Geophys. Res. Oceans, 121, 908933, https://doi.org/10.1002/2015JC011089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soufflet, Y., P. Marchesiello, F. Lemarié, J. Jouanno, X. Capet, L. Debreu, and R. Benshila, 2016: On effective resolution in ocean models. Ocean Modell., 98, 3650, https://doi.org/10.1016/j.ocemod.2015.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steffen, E. L., and E. A. D’Asaro, 2002: Deep convection in the Labrador Sea as observed by Lagrangian floats. J. Phys. Oceanogr., 32, 475492, https://doi.org/10.1175/1520-0485(2002)032<0475:DCITLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strass, V. H., 1994: Mesoscale instability and upwelling. Part II: Testing the diagnostics of vertical motion with a three-dimensional ocean front model. J. Phys. Oceanogr., 24, 17591767, https://doi.org/10.1175/1520-0485(1994)024<1759:MIAUPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, Z., H. S. Torres, P. Klein, A. F. Thompson, L. Siegelman, J. Wang, D. Menemenlis, and C. Hill, 2020: High-frequency submesoscale motions enhance the upward vertical heat transport in the global ocean. J. Geophys. Res. Oceans, 125, e2020JC016544, https://doi.org/10.1029/2020JC016544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and J. C. McWilliams, 2018: Frontogenesis and frontal arrest of a dense filament in the oceanic surface boundary layer. J. Fluid Mech., 837, 341380, https://doi.org/10.1017/jfm.2017.833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suzuki, N., B. Fox-Kemper, P. E. Hamlington, and L. P. Van Roekel, 2016: Surface waves affect frontogenesis. J. Geophys. Res. Oceans, 121, 35973624, https://doi.org/10.1002/2015JC011563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., and C. M. Lee, 2005: Intensification of ocean fronts by down-front winds. J. Phys. Oceanogr., 35, 10861102, https://doi.org/10.1175/JPO2737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., and R. Ferrari, 2008: Friction, frontogenesis, and the stratification of the surface mixed layer. J. Phys. Oceanogr., 38, 25012518, https://doi.org/10.1175/2008JPO3797.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., C. M. Lee, and Y. Yoshikawa, 2010: The subpolar front of the Japan/East Sea. Part II: Inverse method for determining the frontal vertical circulation. J. Phys. Oceanogr., 40, 325, https://doi.org/10.1175/2009JPO4018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., A. Lazar, C. Buckingham, A. C. Naveira Garabato, G. M. Damerell, and K. J. Heywood, 2016: Open-ocean submesoscale motions: A full seasonal cycle of mixed layer instabilities from gliders. J. Phys. Oceanogr., 46, 12851307, https://doi.org/10.1175/JPO-D-15-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomsen, S., T. Kanzow, F. Colas, V. Echevin, G. Krahmann, and A. Engel, 2016: Do submesoscale frontal processes ventilate the oxygen minimum zone off Peru? Geophys. Res. Lett., 43, 81338142, https://doi.org/10.1002/2016GL070548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uchida, T., D. Balwada, R. Abernathey, G. McKinley, S. Smith, and M. Lévy, 2019: The contribution of submesoscale over mesoscale eddy iron transport in the open Southern Ocean. J. Adv. Model. Earth Syst., 11, 39343958, https://doi.org/10.1029/2019MS001805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viúdez, A., 2018: Two modes of vertical velocity in subsurface mesoscale eddies. J. Geophys. Res. Oceans, 123, 37053722, https://doi.org/10.1029/2017JC013735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viúdez, Á., and D. G. Dritschel, 2004: Potential vorticity and the quasigeostrophic and semigeostrophic mesoscale vertical velocity. J. Phys. Oceanogr., 34, 865887, https://doi.org/10.1175/1520-0485(2004)034<0865:PVATQA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viúdez, Á., J. Tintoré, and R. L. Haney, 2002: About the nature of the generalized omega equation. J. Atmos. Sci., 53, 787795, https://doi.org/10.1175/1520-0469(1996)053<0787:ATNOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volkov, D. L., and L.-L. Fu, 2010: On the reasons for the formation and variability of the Azores Current. J. Phys. Oceanogr., 40, 21972220, https://doi.org/10.1175/2010JPO4326.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volkov, D. L., and L. L. Fu, 2011: Interannual variability of the Azores Current strength and eddy energy in relation to atmospheric forcing. J. Geophys. Res., 116, C11011, https://doi.org/10.1029/2011JC007271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitt, D. B., and L. N. Thomas, 2013: Near-inertial waves in strongly baroclinic currents. J. Phys. Oceanogr., 43, 706725, https://doi.org/10.1175/JPO-D-12-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitt, D. B., M. Lévy, and J. R. Taylor, 2019: Submesoscales enhance storm-driven vertical mixing of nutrients: Insights from a biogeochemical large eddy simulation. J. Geophys. Res. Oceans, 124, 81408165, https://doi.org/10.1029/2019JC015370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, L., E. Pallàs-Sanz, Q. Zheng, S. Zhang, X. Zong, X. Yi, and M. Li, 2017: Diagnosis of 3D vertical circulation in the upwelling and frontal zones east of Hainan Island, China. J. Phys. Oceanogr., 47, 755774, https://doi.org/10.1175/JPO-D-16-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshikawa, Y., C. M. Lee, and L. N. Thomas, 2012: The subpolar front of the Japan/East Sea. Part III: Competing roles of frontal dynamics and atmospheric forcing in driving ageostrophic vertical circulation and subduction. J. Phys. Oceanogr., 42, 9911011, https://doi.org/10.1175/JPO-D-11-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, X., A. C. Naveira Garabato, A. P. Martin, C. E. Buckingham, L. Brannigan, and Z. Su, 2019: An annual cycle of submesoscale vertical flow and restratification in the upper ocean. J. Phys. Oceanogr., 49, 14391461, https://doi.org/10.1175/JPO-D-18-0253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 213 213 53
Full Text Views 51 51 20
PDF Downloads 79 79 37

Skills and Limitations of the Adiabatic Omega Equation: How Effective Is It to Retrieve Oceanic Vertical Circulation at Mesoscale and Submesoscale?

View More View Less
  • 1 Laboratoire d’Océanographie et du Climat, Institut Pierre Simon Laplace, CNES/CNRS/IRD/MNHN/SU, Paris, France
  • | 2 Université Grenoble Alpes/CNRS/IRD/G-INP, IGE, Grenoble, France
  • | 3 Centre National de Recherches, Météorologiques, Météo-France, Toulouse, France
© Get Permissions
Restricted access

Abstract

The quasigeostrophic and the generalized omega equations are the most widely used methods to reconstruct vertical velocity w from in situ data. As observational networks with much higher spatial and temporal resolutions are being designed, the question arises of identifying the approximations and scales at which an accurate estimation of w through the omega equation can be achieved and what critical scales and observables are needed. In this paper we test different adiabatic omega reconstructions of w over several regions representative of main oceanic regimes of the global ocean in a fully eddy-resolving numerical simulation with a 1/60° horizontal resolution. We find that the best reconstructions are observed in conditions characterized by energetic turbulence and/or weak stratification where near-surface frontal processes are felt deep into the ocean interior. The quasigeostrophic omega equation gives satisfactory results for scales larger than ~10 km horizontally while the improvements using a generalized formulation are substantial only in conditions where frontal turbulent processes are important (providing improvements with satisfactory reconstruction skill down to ~5 km in scale). The main sources of uncertainties that could be identified are related to processes responsible for ocean thermal wind imbalance (TWI), which is particularly difficult to account for (especially in observation-based studies) and to the deep flow that is generally improperly accounted for in omega reconstructions through the bottom boundary condition. Nevertheless, the reconstruction of mesoscale vertical velocities may be sufficient to estimate vertical fluxes of oceanic properties in many cases of practical interest.

Current affiliation: Instituto del Mar del Peru, Callao, Perú.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-20-0052.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alice Pietri, alice.pietri@locean-ipsl.upmc.fr

Abstract

The quasigeostrophic and the generalized omega equations are the most widely used methods to reconstruct vertical velocity w from in situ data. As observational networks with much higher spatial and temporal resolutions are being designed, the question arises of identifying the approximations and scales at which an accurate estimation of w through the omega equation can be achieved and what critical scales and observables are needed. In this paper we test different adiabatic omega reconstructions of w over several regions representative of main oceanic regimes of the global ocean in a fully eddy-resolving numerical simulation with a 1/60° horizontal resolution. We find that the best reconstructions are observed in conditions characterized by energetic turbulence and/or weak stratification where near-surface frontal processes are felt deep into the ocean interior. The quasigeostrophic omega equation gives satisfactory results for scales larger than ~10 km horizontally while the improvements using a generalized formulation are substantial only in conditions where frontal turbulent processes are important (providing improvements with satisfactory reconstruction skill down to ~5 km in scale). The main sources of uncertainties that could be identified are related to processes responsible for ocean thermal wind imbalance (TWI), which is particularly difficult to account for (especially in observation-based studies) and to the deep flow that is generally improperly accounted for in omega reconstructions through the bottom boundary condition. Nevertheless, the reconstruction of mesoscale vertical velocities may be sufficient to estimate vertical fluxes of oceanic properties in many cases of practical interest.

Current affiliation: Instituto del Mar del Peru, Callao, Perú.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-20-0052.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alice Pietri, alice.pietri@locean-ipsl.upmc.fr

Supplementary Materials

    • Supplemental Materials (PDF 171.44 KB)
Save