• Arbic, B. K., and R. B. Scott, 2008: On quadratic bottom drag, geostrophic turbulence, and oceanic mesoscale eddies. J. Phys. Oceanogr., 38, 84103, https://doi.org/10.1175/2007JPO3653.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., K. L. Polzin, R. B. Scott, J. G. Richman, and J. F. Shaiver, 2013: On eddy viscosity, energy cascades, and the horizontal resolution of gridded satellite altimeter products. J. Phys. Oceanogr., 43, 283300, https://doi.org/10.1175/JPO-D-11-0240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., M. Müller, J. G. Richman, J. F. Shriver, A. J. Morten, R. B. Scott, G. Sérazin, and T. Penduff, 2014: Geostrophic turbulence in the frequency-wavenumber domain: Eddy-driven low-frequency variability. J. Phys. Oceanogr., 44, 20502069, https://doi.org/10.1175/JPO-D-13-054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bühler, O., J. Callies, and R. Ferrari, 2014: Wave-vortex decomposition of one-dimensional ship-track data. J. Fluid Mech., 756, 10071026, https://doi.org/10.1017/jfm.2014.488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bakas, N. A., and P. J. Ioannou, 2013: Emergence of large scale structure in barotropic β-plane turbulence. Phys. Rev. Lett., 110, 224501, https://doi.org/10.1103/PhysRevLett.110.224501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beckmann, A., C. W. Bning, C. Kberle, and J. Willebrand, 1994: Effects of increased horizontal resolution in a simulation of the North Atlantic Ocean. J. Phys. Oceanogr., 24, 326344, https://doi.org/10.1175/1520-0485(1994)024<0326:EOIHRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008a: Mesoscale to submesoscale transition in the California Current system. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943, https://doi.org/10.1175/2007JPO3671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetk, 2008b: Mesoscale to submesoscale transition in the California Current system. Part II: Frontal processes. J. Phys. Oceanogr., 38, 4464, https://doi.org/10.1175/2007JPO3672.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. Deszoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chemke, R., and Y. Kaspi, 2016: The latitudinal dependence of the oceanic barotropic eddy kinetic energy and macroturbulence energy transport. Geophys. Res. Lett., 43, 27232731, https://doi.org/10.1002/2016GL067847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, R., G. R. Flierl, and C. Wunsch, 2014: A description of local and nonlocal eddy-mean flow interaction in a global eddy-permitting state estimate. J. Phys. Oceanogr., 44, 23362352, https://doi.org/10.1175/JPO-D-14-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Constantinou, N. C., and A. M. Hogg, 2019: Eddy saturation of the Southern Ocean: A baroclinic versus barotropic perspective. Geophys. Res. Lett., 46, 12 20212 212, https://doi.org/10.1029/2019GL084117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eden, C., 2007: Eddy length scales in the North Atlantic Ocean. J. Geophys. Res., 112, C06004, https://doi.org/10.1029/2006JC003901.

  • Farrell, B. F., and P. J. Ioannou, 2003: Structural stability of turbulent jets. J. Atmos. Sci., 60, 21012118, https://doi.org/10.1175/1520-0469(2003)060<2101:SSOTJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 2007: Structure and spacing of jets in barotropic turbulence. J. Atmos. Sci., 64, 36523665, https://doi.org/10.1175/JAS4016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253282, https://doi.org/10.1146/annurev.fluid.40.111406.102139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flierl, G. R., 1978: Models of vertical structure and calibration of 2-layer models. Dyn. Atmos. Oceans, 2, 341381, https://doi.org/10.1016/0377-0265(78)90002-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frisch, U., 1995: Turbulence: The Legacy of A.N. Kolmogorov. Cambridge University Press, 296 pp.

    • Crossref
    • Export Citation
  • Fu, L. L., and G. R. Flierl, 1980: Nonlinear energy and enstrophy transfers in a realistically stratified ocean. Dyn. Atmos. Oceans, 4, 219246, https://doi.org/10.1016/0377-0265(80)90029-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, L. L., and R. Ferrari, 2008: Observing oceanic submesoscale processes from space. Eos, Trans. Amer. Geophys. Union, 89, 488, https://doi.org/10.1029/2008EO480003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galperin, B., H. Nakano, H. P. Huang, and S. Sukoriansky, 2004: The ubiquitous zonal jets in the atmospheres of giant planets and Earth’s oceans. Geophys. Res. Lett., 31, L13303, https://doi.org/10.1029/2004GL019691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galperin, B., S. Sukoriansky, N. Dikovskaya, P. Read, Y. Yamazaki, and R. Wordsworth, 2006: Anisotropic turbulence and zonal jets in rotating flows with beta-effect. Nonlinear Processes Geophys., 13, 8398, https://doi.org/10.5194/npg-13-83-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galperin, B., S. Sukoriansky, and N. Dikovskaya, 2010: Geophysical flows with anisotropic turbulence and dispersive waves: Flows with a beta-effect. Ocean Dyn., 60, 427441, https://doi.org/10.1007/s10236-010-0278-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greene, S. E., D. J. Bottjer, F. A. Corsetti, W. M. Berelson, and J.-P. Zonneveld, 2012: A subseafloor carbonate factory across the Triassic-Jurassic transition. Geology, 40, 10431046, https://doi.org/10.1130/G33205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and V. D. Larichev, 1996: A scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta-plane. J. Atmos. Sci., 53, 946952, https://doi.org/10.1175/1520-0469(1996)053<0946:ASTFHH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, G., and M. C. Hendershott, 1977: Stochastic closure for nonlinear Rossby waves. J. Fluid Mech., 82, 747765, https://doi.org/10.1017/S0022112077000962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, C., and Y. Xu, 2018: Update on the global energy dissipation rate of deep-ocean low-frequency flows by bottom boundary layer. J. Phys. Oceanogr., 48, 12431255, https://doi.org/10.1175/JPO-D-16-0287.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, M., 1985: Modal decomposition of the low-frequency currents and baroclinic instability at Drake passage. J. Phys. Oceanogr., 15, 11571181, https://doi.org/10.1175/1520-0485(1985)015<1157:MDOTLF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., and R. Ferrari, 2012: Macroturbulent equilibration in a thermally forced primitive equation system. J. Atmos. Sci., 69, 695713, https://doi.org/10.1175/JAS-D-11-041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., and I. M. Held, 2014: Parameterizing subgrid-scale eddy effects using energetically consistent backscatter. Ocean Modell., 80, 3648, https://doi.org/10.1016/j.ocemod.2014.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., and et al. , 2008: Upper ocean turbulence from high-resolution 3D simulations. J. Phys. Oceanogr., 38, 17481763, https://doi.org/10.1175/2007JPO3773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klocker, A., and R. Abernathey, 2014: Global patterns of mesoscale eddy properties and diffusivities. J. Phys. Oceanogr., 44, 10301046, https://doi.org/10.1175/JPO-D-13-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobashi, F., and H. Kawamura, 2002: Seasonal variation and instability nature of the North Pacific subtropical countercurrent and the Hawaiian lee countercurrent. J. Geophys. Res., 107, 3185, https://doi.org/10.1029/2001JC001225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., and J. Pedlosky, 2004: The instability of Rossby basin modes and the oceanic eddy field. J. Phys. Oceanogr., 34, 20272041, https://doi.org/10.1175/1520-0485(2004)034<2027:TIORBM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., 2009: What vertical mode does the altimeter reflect? On the decomposition in baroclinic modes and on a surface-trapped mode. J. Phys. Oceanogr., 39, 28572874, https://doi.org/10.1175/2009JPO3968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larichev, V. D., and J. C. McWilliams, 1991: Weakly decaying turbulence in an equivalent-barotropic fluid. Phys. Fluids, 3A, 938950, https://doi.org/10.1063/1.857970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masich, J., T. K. Chereskin, and M. R. Mazloff, 2015: Topographic form stress in the Southern Ocean state estimate. J. Geophys. Res. Oceans, 120, 79197933, https://doi.org/10.1002/2015JC011143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maximenko, N. A., B. Bang, and H. Sasaki, 2005: Observational evidence of alternating zonal jets in the world ocean. Geophys. Res. Lett., 32, L12607, https://doi.org/10.1029/2005GL022728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maximenko, N. A., and et al. , 2008: Stationary mesoscale jet-like features in the ocean. Geophys. Res. Lett., 35, L08603, https://doi.org/10.1029/2008GL033267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazloff, M. R., P. Heimbach, and C. Wunsch, 2010: An eddy-permitting Southern Ocean state estimate. J. Phys. Oceanogr., 40, 880899, https://doi.org/10.1175/2009JPO4236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 1984: The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech., 146, 2143, https://doi.org/10.1017/S0022112084001750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., and et al. , 2008: ECCO2: High resolution global ocean and sea ice data synthesis. Mercator Ocean Quarterly Newsletter, No. 31, Mercator-Ocean, Ramonville Saint-Agne, France, 13–21.

  • Munk, W. H., and E. Palmén, 1951: Note on the dynamics of the Antarctic circumpolar current. Tellus, 3, 5355, https://doi.org/10.3402/tellusa.v3i1.8609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer, 710 pp.

    • Crossref
    • Export Citation
  • Qiu, B., R. B. Scott, and S. Chen, 2008: Length scales of eddy generation and nonlinear evolution of the seasonally modulated South Pacific subtropical countercurrent. J. Phys. Oceanogr., 38, 15151528, https://doi.org/10.1175/2007JPO3856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1975: Waves and turbulence on a beta-plane. J. Fluid Mech., 69, 417443, https://doi.org/10.1017/S0022112075001504.

  • Rhines, P. B., 1977: The dynamics of unsteady currents. Marine Modeling, E. D Goldberg, Ed., The Sea—Ideas and Observations on Progress in the Study of the Seas, Vol. 6, Wiley, 189–318.

  • Richards, K., N. Maximenko, F. Bryan, and H. Sasaki, 2006: Zonal jets in the Pacific Ocean. Geophys. Res. Lett., 33, L03605, https://doi.org/10.1029/2005GL024645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salmon, R., 1980: Baroclinic instability and geostrophic turbulence. Geophys. Astrophys. Fluid Dyn., 15, 167211, https://doi.org/10.1080/03091928008241178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salmon, R., 1998: Lectures on Geophysical Fluid Dynamics. Oxford University Press, 378 pp.

    • Crossref
    • Export Citation
  • Sasaki, H., and P. Klein, 2012: SSH wavenumber spectra in the North Pacific from a high-resolution realistic simulation. J. Phys. Oceanogr., 42, 12331241, https://doi.org/10.1175/JPO-D-11-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlösser, F., and C. Eden, 2007: Diagnosing the energy cascade in a model of the North Atlantic. Geophys. Res. Lett., 34, L02604, https://doi.org/10.1029/2006GL027813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. B., 2001: Evolution of energy and enstrophy containing scales in decaying, two-dimensional turbulence with friction. Phys. Fluids, 13, 27392742, https://doi.org/10.1063/1.1388181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. B., and F. Wang, 2005: Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. J. Phys. Oceanogr., 35, 16501666, https://doi.org/10.1175/JPO2771.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. B., and B. K. Arbic, 2007: Spectral energy fluxes in geostrophic turbulence: Implications for ocean energetics. J. Phys. Oceanogr., 37, 673688, https://doi.org/10.1175/JPO3027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. B., and Y. Xu, 2009: An update on the wind power input to the surface geostrophic flow of the World Ocean. Deep-Sea Res., 56, 295304, https://doi.org/10.1016/j.dsr.2008.09.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sebille, E. V., I. Kamenkovich, and J. K. Willis, 2011: Quasi-zonal jets in 3D Argo data of the northeast Atlantic. Geophys. Res. Lett., 38, L02606, https://doi.org/10.1029/2010GL046267.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., 2007: The geography of linear baroclinic instability in Earth’s oceans. J. Mar. Res., 65, 655683, https://doi.org/10.1357/002224007783649484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. S., and G. K. Vallis, 2001: The scales and equilibration of midocean eddies: Freely evolving flow. J. Phys. Oceanogr., 31, 554571, https://doi.org/10.1175/1520-0485(2001)031<0554:TSAEOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. S., and G. K. Vallis, 2002: The scales and equilibration of midocean eddies: Forced–dissipative flow. J. Phys. Oceanogr., 32, 16991720, https://doi.org/10.1175/1520-0485(2002)032<1699:TSAEOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, L. T., E. P. Chassignet, and R. Bleck, 2000: The impact of lateral boundary conditions and horizontal resolution on North Atlantic water mass transformations and pathways in an isopycnic coordinate ocean model. J. Phys. Oceanogr., 30, 137159, https://doi.org/10.1175/1520-0485(2000)030<0137:TIOLBC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srinivasan, K., and W. R. Young, 2012: Zonostrophic instability. J. Atmos. Sci., 69, 16331656, https://doi.org/10.1175/JAS-D-11-0200.1.

  • Stewart, R. H., C. Shum, B. Tapley, and L. Ji, 1996: Statistics of geostrophic turbulence in the southern ocean from satellite altimetry and numerical models. Physica D, 98, 599613, https://doi.org/10.1016/0167-2789(96)00103-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sukoriansky, S., and B. Galperin, 2016: QNSE theory of turbulence anisotropization and onset of the inverse energy cascade by solid body rotation. J. Fluid Mech., 805, 384421, https://doi.org/10.1017/jfm.2016.568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and W. R. Young, 2006: Scaling baroclinic eddy fluxes: Vortices and energy balance. J. Phys. Oceanogr., 36, 720738, https://doi.org/10.1175/JPO2874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and J. B. Sallee, 2012: Jets and topography: Jet transitions and the impact on transport in the Antarctic circumpolar current. J. Phys. Oceanogr., 42, 956972, https://doi.org/10.1175/JPO-D-11-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tobias, S. M., and J. B. Marston, 2013: Direct statistical simulation of out-of-equilibrium jets. Phys. Rev. Lett., 110, 104502, https://doi.org/10.1103/PhysRevLett.110.104502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., and B. L. Hua, 1988: Influence of bottom topography on stratified quasi-geostrophic turbulence in the ocean. Geophys. Astrophys. Fluid Dyn., 43, 265305, https://doi.org/10.1080/03091928808208867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulloch, R., J. Marshall, C. Hill, and K. S. Smith, 2011: Scales, growth rates, and spectral fluxes of baroclinic instability in the ocean. J. Phys. Oceanogr., 41, 10571076, https://doi.org/10.1175/2011JPO4404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., and M. E. Maltrud, 1993: Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr., 23, 13461362, https://doi.org/10.1175/1520-0485(1993)023<1346:GOMFAJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venaille, A., K. S. Smith, and G. K. Valllis, 2011: Baroclinic turbulence in the ocean: Analysis with primitive equation and quasigeostrophic simulations. J. Phys. Oceanogr., 41, 16051623, https://doi.org/10.1175/JPO-D-10-05021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., Z. Liu, and C. Pang, 2015: Geographical distribution and anisotropy of the inverse kinetic energy cascade, and its role in the eddy equilibrium processes. J. Geophys. Res. Oceans, 120, 48914906, https://doi.org/10.1002/2014JC010476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ward, M. L., and A. M. Hogg, 2011: Establishment of momentum balance by form stress in a wind-driven channel. Ocean Modell., 40, 133146, https://doi.org/10.1016/j.ocemod.2011.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witter, D. L., and D. B. Chelton, 1998: Eddy–mean flow interaction in zonal oceanic jet flow along zonal ridge topography. J. Phys. Oceanogr., 28, 20192039, https://doi.org/10.1175/1520-0485(1998)028<2019:EMFIIZ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1997: The vertical partition of oceanic horizontal kinetic energy. J. Phys. Oceanogr., 27, 17701794, https://doi.org/10.1175/1520-0485(1997)027<1770:TVPOOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Y., and L.-L. Fu, 2011: Global variability of the wavenumber spectrum of oceanic mesoscale turbulence. J. Phys. Oceanogr., 41, 802809, https://doi.org/10.1175/2010JPO4558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Y., and L.-L. Fu, 2012: The effects of altimeter instrument noise on the estimation of the wavenumber spectrum of sea surface height. J. Phys. Oceanogr., 42, 22292233, https://doi.org/10.1175/JPO-D-12-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Youngs, M. K., A. F. Thompson, A. Lazar, and K. J. Richards, 2017: ACC meanders, energy transfer, and mixed barotropic–baroclinic instability. J. Phys. Oceanogr., 47, 12911305, https://doi.org/10.1175/JPO-D-16-0160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 510 510 41
Full Text Views 153 153 21
PDF Downloads 196 196 23

Barotropic and Baroclinic Inverse Kinetic Energy Cascade in the Antarctic Circumpolar Current

View More View Less
  • 1 Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
  • | 2 Laboratory for Ocean Dynamics and Climate, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
  • | 3 Department of mathematics and statistics, Ludong University, Yantai, China
  • | 4 Center for Ocean-Mega Science, Chinese Academy of Sciences, Qingdao, China
© Get Permissions
Restricted access

Abstract

Stratified geostrophic turbulence theory predicts an inverse energy cascade for the barotropic (BT) mode. Satellite altimetry has revealed a net inverse cascade in the baroclinic (BC) mode. Here the spatial variabilities of BT and BC kinetic energy fluxes in the Antarctic Circumpolar Current (ACC) were investigated using ECCO2 data, which synthesize satellite data and in situ measurements with an eddy-permitting general circulation model containing realistic bathymetry and wind forcing. The BT and BC inverse kinetic energy cascades both reveal complex spatial variations that could not be explained fully by classical arguments. For example, the BC injection scales match better with most unstable scales than with the first-mode deformation scales, but the opposite is true for the BT mode. In addition, the BT and BC arrest scales do not follow the Rhines scale well in terms of spatial variation, but show better consistency with their own energy-containing scales. The reverse cascade of the BT and BC modes was found related to their EKE, and better correlation was found between the BT inverse cascade and barotropization. Speculations of the findings were proposed; however, further observations and modeling experiments are needed to test these interpretations. Spectral flux anisotropy exhibits a feature associated with oceanic jets that is consistent with classical expectations. Specifically, the spectral flux along the along-stream direction remains negative at scales up to that of the studied domain (~2000 km), while that in the perpendicular direction becomes positive close to the scale of the width of a typical jet.

Hongjie Li and Yongsheng Xu are co-first authors.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yongsheng Xu, yongsheng.xu@alumni.caltech.edu

Abstract

Stratified geostrophic turbulence theory predicts an inverse energy cascade for the barotropic (BT) mode. Satellite altimetry has revealed a net inverse cascade in the baroclinic (BC) mode. Here the spatial variabilities of BT and BC kinetic energy fluxes in the Antarctic Circumpolar Current (ACC) were investigated using ECCO2 data, which synthesize satellite data and in situ measurements with an eddy-permitting general circulation model containing realistic bathymetry and wind forcing. The BT and BC inverse kinetic energy cascades both reveal complex spatial variations that could not be explained fully by classical arguments. For example, the BC injection scales match better with most unstable scales than with the first-mode deformation scales, but the opposite is true for the BT mode. In addition, the BT and BC arrest scales do not follow the Rhines scale well in terms of spatial variation, but show better consistency with their own energy-containing scales. The reverse cascade of the BT and BC modes was found related to their EKE, and better correlation was found between the BT inverse cascade and barotropization. Speculations of the findings were proposed; however, further observations and modeling experiments are needed to test these interpretations. Spectral flux anisotropy exhibits a feature associated with oceanic jets that is consistent with classical expectations. Specifically, the spectral flux along the along-stream direction remains negative at scales up to that of the studied domain (~2000 km), while that in the perpendicular direction becomes positive close to the scale of the width of a typical jet.

Hongjie Li and Yongsheng Xu are co-first authors.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yongsheng Xu, yongsheng.xu@alumni.caltech.edu
Save