• Abernathey, R., D. Ferreira, and A. Klocker, 2013: Diagnostics of isopycnal mixing in a circumpolar channel. Ocean Modell., 72, 116, https://doi.org/10.1016/j.ocemod.2013.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 20312048, https://doi.org/10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1978: Generalized Eliassen–Palm and Charney–Drazin theorems for waves on axisymmetric mean flows in compressible atmospheres. J. Atmos. Sci., 35, 175185, https://doi.org/10.1175/1520-0469(1978)035<0175:GEPACD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armitage, T. W., G. E. Manucharyan, A. A. Petty, R. Kwok, and A. F. Thompson, 2020: Enhanced eddy activity in the Beaufort Gyre in response to sea ice loss. Nat. Commun., 11, 761, https://doi.org/10.1038/s41467-020-14449-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belkin, I. M., 2004: Propagation of the “Great Salinity Anomaly” of the 1990s around the northern North Atlantic. Geophys. Res. Lett., 31, L08306, https://doi.org/10.1029/2003GL019334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belkin, I. M., S. Levitus, J. Antonov, and S.-A. Malmberg, 1998: “Great Salinity Anomalies” in the North Atlantic. Prog. Oceanogr., 41, 168, https://doi.org/10.1016/S0079-6611(98)00015-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyd, J. P., 1976: The noninteraction of waves with the zonally averaged flow on a spherical Earth and the interrelationships on eddy fluxes of energy, heat and momentum. J. Atmos. Sci., 33, 22852291, https://doi.org/10.1175/1520-0469(1976)033<2285:TNOWWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., and et al. , 2009: World Ocean Database 2009. NOAA Atlas NESDIS 66, 216 pp., http://www.nodc.noaa.gov/OC5/WOD09/pr_wod09.html.

  • Buckley, M. W., and J. Marshall, 2016: Observations, inferences, and mechanisms of the Atlantic meridional overturning circulation: A review. Rev. Geophys., 54, 563, https://doi.org/10.1002/2015RG000493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewey, S., J. Morison, R. Kwok, S. Dickinson, D. Morison, and R. Andersen, 2018: Arctic ice-ocean coupling and gyre equilibration observed with remote sensing. Geophys. Res. Lett., 45, 14991508, https://doi.org/10.1002/2017GL076229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickson, R. R., J. Meincke, S.-A. Malmberg, and A. J. Lee, 1988: The “great salinity anomaly” in the northern North Atlantic 1968–1982. Prog. Oceanogr., 20, 103151, https://doi.org/10.1016/0079-6611(88)90049-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doddridge, E. W., D. P. Marshall, and A. M. Hogg, 2016: Eddy cancellation of the Ekman cell in subtropical gyres. J. Phys. Oceanogr., 46, 29953010, https://doi.org/10.1175/JPO-D-16-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doddridge, E. W., G. Meneghello, J. Marshall, J. Scott, and C. Lique, 2019: A three-way balance in the Beaufort Gyre: The ice-ocean governor, wind stress, and eddy diffusivity. J. Geophys. Res. Oceans, 124, 31073124, https://doi.org/10.1029/2018JC014897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fer, I., 2009: Weak vertical diffusion allows maintenance of cold halocline in the central Arctic. Atmos. Ocean. Sci. Lett., 2, 148152, https://doi.org/10.1080/16742834.2009.11446789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelderloos, R., F. Straneo, and C. A. Katsman, 2012: Mechanisms behind the temporary shutdown of deep convection in the Labrador Sea: Lessons from the great salinity anomaly years 1968–71. J. Climate, 25, 67436755, https://doi.org/10.1175/JCLI-D-11-00549.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., 2011: The Gent–McWilliams parameterization: 20/20 hindsight. Ocean Modell., 39, 29, https://doi.org/10.1016/j.ocemod.2010.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463474, https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S., 2018: Fundamentals of Ocean Climate Models. Princeton University Press, 528 pp.

  • Haine, T. W. N., and et al. , 2015: Arctic freshwater export: Status, mechanisms, and prospects. Global Planet. Change, 125, 1335, https://doi.org/10.1016/j.gloplacha.2014.11.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IOC, SCOR, and IAPSO, 2010: The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamic properties. UNESCO Intergovernmental Oceanographic Commission, Manuals and Guides 56, 196 pp., http://www.teos-10.org/pubs/TEOS-10_Manual.pdf.

  • Jackson, L., and M. Vellinga, 2013: Multidecadal to centennial variability of the AMOC: HadCM3 and a perturbed physics ensemble. J. Climate, 26, 23902407, https://doi.org/10.1175/JCLI-D-11-00601.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., S. B. Cornish, Y. Kostov, E. Beer, and C. Lique, 2018: Arctic Ocean freshwater content and its decadal memory of sea-level pressure. Geophys. Res. Lett., 45, 49915001, https://doi.org/10.1029/2017GL076870.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lauvset, S. K., A. Brakstad, K. Våge, A. Olsen, E. Jeansson, and K. A. Mork, 2018: Continued warming, salinification and oxygenation of the Greenland Sea gyre. Tellus, 70A, 19, https://doi.org/10.1080/16000870.2018.1476434.

    • Search Google Scholar
    • Export Citation
  • Liang, X., M. Spall, and C. Wunsch, 2017: Global ocean vertical velocity from a dynamically consistent ocean state estimate. J. Geophys. Res. Oceans, 122, 82088224, https://doi.org/10.1002/2017JC012985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lique, C., J. D. Guthrie, M. Steele, A. Proshutinsky, J. H. Morison, and R. Krishfield, 2014: Diffusive vertical heat flux in the Canada Basin of the Arctic Ocean inferred from moored instruments. J. Geophys. Res. Oceans, 119, 496508, https://doi.org/10.1002/2013JC009346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manucharyan, G. E., and M. A. Spall, 2016: Wind-driven freshwater buildup and release in the Beaufort Gyre constrained by mesoscale eddies. Geophys. Res. Lett., 43, 273282, https://doi.org/10.1002/2015GL065957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manucharyan, G. E., and P. E. Isachsen, 2019: Critical role of continental slopes in halocline and eddy dynamics of the Ekman-driven Beaufort Gyre. J. Geophys. Res. Oceans, 124, 26792696, https://doi.org/10.1029/2018JC014624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manucharyan, G. E., M. A. Spall, and A. F. Thompson, 2016: A theory of the wind-driven Beaufort Gyre variability. J. Phys. Oceanogr., 46, 32633278, https://doi.org/10.1175/JPO-D-16-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manucharyan, G. E., A. F. Thompson, and M. A. Spall, 2017: Eddy memory mode of multidecadal variability in residual-mean ocean circulations with application to the beaufort gyre. J. Phys. Oceanogr., 47, 855866, https://doi.org/10.1175/JPO-D-16-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meneghello, G., J. Marshall, S. T. Cole, and M.-L. Timmermans, 2017: Observational inferences of lateral eddy diffusivity in the halocline of the Beaufort Gyre. Geophys. Res. Lett., 44, 12 33112 338, https://doi.org/10.1002/2017GL075126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meneghello, G., J. Marshall, J.-M. Campin, E. Doddridge, and M.-L. Timmermans, 2018a: The ice-ocean governor: Ice-ocean stress feedback limits Beaufort Gyre spin-up. Geophys. Res. Lett., 45, 11293, https://doi.org/10.1029/2018GL080171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meneghello, G., J. Marshall, M.-L. Timmermans, and J. Scott, 2018b: Observations of seasonal upwelling and downwelling in the beaufort sea mediated by sea ice. J. Phys. Oceanogr., 48, 795805, https://doi.org/10.1175/JPO-D-17-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meneghello, G., E. Doddridge, J. Marshall, J. Scott, and J.-M. Campin, 2020: Exploring the role of the “ice–ocean governor” and mesoscale eddies in the equilibration of the Beaufort Gyre: Lessons from observations. J. Phys. Oceanogr., 50, 269277, https://doi.org/10.1175/JPO-D-18-0223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Proshutinsky, A., R. H. Bourke, and F. A. McLaughlin, 2002: The role of the Beaufort Gyre in Arctic climate variability: Seasonal to decadal climate scales. Geophys. Res. Lett., 29, 2100, https://doi.org/10.1029/2002GL015847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Proshutinsky, A., D. Dukhovskoy, M.-L. Timmermans, R. Krishfield, and J. L. Bamber, 2015: Arctic circulation regimes. Philos. Trans. Roy. Soc., 373A, 20140160, https://doi.org/10.1098/rsta.2014.0160.

    • Search Google Scholar
    • Export Citation
  • Proshutinsky, A., and et al. , 2019: Analysis of the Beaufort Gyre freshwater content in 2003–2018. J. Geophys. Res. Oceans, 124, 96589689, https://doi.org/10.1029/2019JC015281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Proshutinsky, A., R. Krishfield, and M.-L. Timmermans, 2020: Introduction to special collection on Arctic Ocean Modeling and Observational Synthesis (FAMOS) 2: Beaufort Gyre phenomenon. J. Geophys. Res. Oceans, 125, e2019JC015400, https://doi.org/10.1029/2019JC015400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Proshutinsky, A. Y., and M. A. Johnson, 1997: Two circulation regimes of the wind-driven Arctic Ocean. J. Geophys. Res., 102, 12 49312 514, https://doi.org/10.1029/97JC00738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rainville, L., and P. Winsor, 2008: Mixing across the Arctic Ocean: Microstructure observations during the Beringia 2005 expedition. Geophys. Res. Lett., 35, L08606, https://doi.org/10.1029/2008GL033532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, https://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and et al. , 2009: The Argo Program: Observing the global ocean with profiling floats. Oceanography, 22, 3443, https://doi.org/10.5670/oceanog.2009.36.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidtko, S., G. C. Johnson, and J. M. Lyman, 2013: MIMOC: A global monthly isopycnal upper-ocean climatology with mixed layers. J. Geophys. Res. Oceans, 118, 16581672, https://doi.org/10.1002/jgrc.20122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. S., and J. Marshall, 2009: Evidence for enhanced eddy mixing at middepth in the Southern Ocean. J. Phys. Oceanogr., 39, 5069, https://doi.org/10.1175/2008JPO3880.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2013: On the circulation of Atlantic Water in the Arctic Ocean. J. Phys. Oceanogr., 43, 23522371, https://doi.org/10.1175/JPO-D-13-079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., J. Marshall, A. Proshutinsky, and J. Scott, 2017: Seasonally derived components of the Canada Basin halocline. Geophys. Res. Lett., 44, 50085015, https://doi.org/10.1002/2017GL073042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toole, J. M., R. A. Krishfield, M.-L. Timmermans, and A. Proshutinsky, 2011: The ice-tethered profiler: Argo of the Arctic. Oceanography, 24, 126135, https://doi.org/10.5670/oceanog.2011.64.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Treguier, A.-M. I. Held, and V. Larichev, 1997: Parameterization of quasigeostrophic eddies in primitive equation ocean models. J. Phys. Oceanogr., 27, 567580, https://doi.org/10.1175/1520-0485(1997)027<0567:POQEIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics. 2nd ed. Cambridge University Press, 964 pp.

  • Zhao, M., M.-L. Timmermans, S. Cole, R. Krishfield, and J. Toole, 2016: Evolution of the eddy field in the Arctic Ocean’s Canada Basin, 2005–2015. Geophys. Res. Lett., 43, 81068114, https://doi.org/10.1002/2016GL069671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., M.-L. Timmermans, R. Krishfield, and G. Manucharyan, 2018: Partitioning of kinetic energy in the Arctic Ocean’s Beaufort Gyre. J. Geophys. Res. Oceans, 123, 48064819, https://doi.org/10.1029/2018JC014037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, W., M. Steele, J. Zhang, and J. Zhao, 2018: Greater role of geostrophic currents in Ekman dynamics in the western Arctic Ocean as a mechanism for Beaufort gyre stabilization. J. Geophys. Res. Oceans, 123, 149165, https://doi.org/10.1002/2017JC013282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, W., M. Steele, J. Zhang, and S. T. Cole, 2019: Circulation of Pacific winter water in the western Arctic Ocean. J. Geophys. Res. Oceans, 124, 863881, https://doi.org/10.1029/2018JC014604.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 176 176 34
Full Text Views 48 48 4
PDF Downloads 62 62 5

Vertical Structure of the Beaufort Gyre Halocline and the Crucial Role of the Depth-Dependent Eddy Diffusivity

View More View Less
  • 1 Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut
  • | 2 Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland
  • | 3 School of Oceanography, University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

Theories of the Beaufort Gyre (BG) dynamics commonly represent the halocline as a single layer with a thickness depending on the Eulerian-mean and eddy-induced overturning. However, observations suggest that the isopycnal slope increases with depth, and a theory to explain this profile remains outstanding. Here we develop a multilayer model of the BG, including the Eulerian-mean velocity, mesoscale eddy activity, diapycnal mixing, and lateral boundary fluxes, and use it to investigate the dynamics within the Pacific Winter Water (PWW) layer. Using theoretical considerations, observational data, and idealized simulations, we demonstrate that the eddy overturning is critical in explaining the observed vertical structure. In the absence of the eddy overturning, the Ekman pumping and the relatively weak vertical mixing would displace isopycnals in a nearly parallel fashion, contrary to observations. This study finds that the observed increase of the isopycnal slope with depth in the climatological state of the gyre is consistent with a Gent–McWilliams eddy diffusivity coefficient that decreases by at least 10%–40% over the PWW layer. We further show that the depth-dependent eddy diffusivity profile can explain the relative magnitude of the correlated isopycnal depth and layer thickness fluctuations on interannual time scales. Our inference that the eddy overturning generates the isopycnal layer thickness gradients is consistent with the parameterization of eddies via a Gent–McWilliams scheme but not potential vorticity diffusion. This study implies that using a depth-independent eddy diffusivity, as is commonly done in low-resolution ocean models, may contribute to misrepresentation of the interior BG dynamics.

Current affiliation: Department of Applied Mathematics, University of Colorado Boulder, Boulder, Colorado.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. S. Kenigson, jessica.kenigson@colorado.edu

Abstract

Theories of the Beaufort Gyre (BG) dynamics commonly represent the halocline as a single layer with a thickness depending on the Eulerian-mean and eddy-induced overturning. However, observations suggest that the isopycnal slope increases with depth, and a theory to explain this profile remains outstanding. Here we develop a multilayer model of the BG, including the Eulerian-mean velocity, mesoscale eddy activity, diapycnal mixing, and lateral boundary fluxes, and use it to investigate the dynamics within the Pacific Winter Water (PWW) layer. Using theoretical considerations, observational data, and idealized simulations, we demonstrate that the eddy overturning is critical in explaining the observed vertical structure. In the absence of the eddy overturning, the Ekman pumping and the relatively weak vertical mixing would displace isopycnals in a nearly parallel fashion, contrary to observations. This study finds that the observed increase of the isopycnal slope with depth in the climatological state of the gyre is consistent with a Gent–McWilliams eddy diffusivity coefficient that decreases by at least 10%–40% over the PWW layer. We further show that the depth-dependent eddy diffusivity profile can explain the relative magnitude of the correlated isopycnal depth and layer thickness fluctuations on interannual time scales. Our inference that the eddy overturning generates the isopycnal layer thickness gradients is consistent with the parameterization of eddies via a Gent–McWilliams scheme but not potential vorticity diffusion. This study implies that using a depth-independent eddy diffusivity, as is commonly done in low-resolution ocean models, may contribute to misrepresentation of the interior BG dynamics.

Current affiliation: Department of Applied Mathematics, University of Colorado Boulder, Boulder, Colorado.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. S. Kenigson, jessica.kenigson@colorado.edu
Save