• Berloff, P., and J. McWilliams, 1999: Large-scale, low-frequency variability in wind-driven ocean gyres. J. Phys. Oceanogr., 29, 19251949, https://doi.org/10.1175/1520-0485(1999)029<1925:LSLFVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, S. P., 2013: Divergent eddy heat fluxes in the Kuroshio Extension at 144°–148°E. Part II: Spatiotemporal variability. J. Phys. Oceanogr., 43, 24162431, https://doi.org/10.1175/JPO-D-13-061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, S. P., F. Bryan, and R. Small, 2015: Bjerknes-like compensation in the wintertime North Pacific. J. Phys. Oceanogr., 45, 13391355, https://doi.org/10.1175/JPO-D-14-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, S. P., R. J. Small, F. O. Bryan, and R. A. Tomas, 2017: Scale dependence of midlatitude air–sea interaction. J. Climate, 30, 82078221, https://doi.org/10.1175/JCLI-D-17-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, J., L. Thompson, J. Patoux, K. Kelly, and S. Dickinson, 2010: The signature of the midlatitude tropospheric storm tracks in the surface winds. J. Climate, 23, 11601174, https://doi.org/10.1175/2009JCLI3064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D., M. Schlax, M. Freilich, and R. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978983, https://doi.org/10.1126/science.1091901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cornillon, P., and K. Park, 2001: Warm core ring velocities inferred from NSCAT. Geophys. Res. Lett., 28, 575578, https://doi.org/10.1029/2000GL011487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eden, C., and H. Dietze, 2009: Effects of mesoscale eddy/wind interactions on biological new production and eddy kinetic energy. J. Geophys. Res., 114, C05023, https://doi.org/10.1029/2008JC005129.

    • Search Google Scholar
    • Export Citation
  • Gan, B., and L. Wu, 2015: Feedbacks of sea surface temperature to wintertime storm tracks in the North Atlantic. J. Climate, 28, 306323, https://doi.org/10.1175/JCLI-D-13-00719.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaube, P., D. Chelton, R. Samelson, M. Schlax, and L. O’Neill, 2015: Satellite observations of mesoscale eddy-induced Ekman pumping. J. Phys. Oceanogr., 45, 104132, https://doi.org/10.1175/JPO-D-14-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. Molemaker, and J. McWilliams, 2014: Submesoscale cold filaments in the Gulf Stream. J. Phys. Oceanogr., 44, 26172643, https://doi.org/10.1175/JPO-D-14-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, Z., P. Chang, X. Shan, S. Wang, L. Wu, and J. Kurian, 2019: Mesoscale SST dynamics in the Kuroshio–Oyashio extension region. J. Phys. Oceanogr., 49, 13391352, https://doi.org/10.1175/JPO-D-18-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, Z., and et al. , 2020: Maintenance of mid-latitude oceanic fronts by mesoscale eddies. Sci. Adv., 6, eaba7880, https://doi.org/10.1126/sciadv.aba7880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, K., S. Dickinson, M. McPhaden, and G. Johnson, 2001: Ocean currents evident in satellite wind data. Geophys. Res. Lett., 28, 24692472, https://doi.org/10.1029/2000GL012610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, K., R. Small, R. Samelson, B. Qiu, T. Joyce, Y. Kwon, and M. Cronin, 2010: Western boundary currents and frontal air–sea interaction: Gulf Stream and Kuroshio Extension. J. Climate, 23, 56445667, https://doi.org/10.1175/2010JCLI3346.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kida, S., and et al. , 2015: Oceanic fronts and jets around Japan: A review. J. Oceanogr., 71, 469497, https://doi.org/10.1007/s10872-015-0283-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., and G. Lapeyre, 2009: The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annu. Rev. Mar. Sci., 1, 351375, https://doi.org/10.1146/annurev.marine.010908.163704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konda, M., H. Ichikawa, H. Tomita, and M. Cronin, 2010: Surface heat flux variations across the Kuroshio Extension as observed by surface flux buoys. J. Climate, 23, 52065221, https://doi.org/10.1175/2010JCLI3391.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W., and S. Yeager, 2009: The global climatology of an interannually varying air-sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W., J. McWilliams, and S. Doney, 1994: Oceanic vertical mixing—A review and a model with a nonlocal boundary-layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X. S., 2016: Canonical transfer and multiscale energetics for primitive and quasigeostrophic atmospheres. J. Atmos. Sci., 73, 44394468, https://doi.org/10.1175/JAS-D-16-0131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X. S., and A. Robinson, 2005: Localized multiscale energy and vorticity analysis: I. Fundamentals. Dyn. Atmos. Oceans, 38, 195230, https://doi.org/10.1016/j.dynatmoce.2004.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., P. Chang, J. Kurian, R. Saravanan, and X. Lin, 2018: Satellite observed precipitation response to ocean mesoscale eddies. J. Climate, 31, 68796895, https://doi.org/10.1175/JCLI-D-17-0668.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167, https://doi.org/10.3402/tellusa.v7i2.8796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, X., and et al. , 2016: Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature, 535, 533537, https://doi.org/10.1038/nature18640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc., 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.

  • Nakamura, H., T. Sampe, Y. Tanimoto, and A. Shimpo, 2004: Observed associations among storm tracks, jet streams and midlatitude oceanic fronts. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 329–346.

    • Crossref
    • Export Citation
  • Nakano, H., H. Tsujino, and K. Sakamoto, 2013: Tracer transport in cold-core rings pinched off from the Kuroshio Extension in an eddy-resolving ocean general circulation model. J. Geophys. Res. Oceans, 118, 54615488, https://doi.org/10.1002/jgrc.20375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2001: Kuroshio and Oyashio currents. Encyclopedia of Ocean Sciences, Academic Press, 1413–1425.

    • Crossref
    • Export Citation
  • Qiu, B., and S. Chen, 2005: Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. J. Phys. Oceanogr., 35, 20902103, https://doi.org/10.1175/JPO2807.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2010: Eddy-mean flow interaction in the decadally modulating Kuroshio Extension system. Deep-Sea Res. II, 57, 10981110, https://doi.org/10.1016/j.dsr2.2008.11.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2011: Effect of decadal Kuroshio Extension jet and eddy variability on the modification of North Pacific Intermediate Water. J. Phys. Oceanogr., 41, 503515, https://doi.org/10.1175/2010JPO4575.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., K. Kelly, and T. Joyce, 1991: Mean flow and variability in the Kuroshio Extension from Geosat altimetry data. J. Geophys. Res., 96, 18 49118 507, https://doi.org/10.1029/91JC01834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, N. Schneider, and B. Taguchi, 2014: A coupled decadal prediction of the dynamic state of the Kuroshio Extension system. J. Climate, 27, 17511764, https://doi.org/10.1175/JCLI-D-13-00318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, and N. Schneider, 2017: Dynamical links between the decadal variability of the Oyashio and Kuroshio Extensions. J. Climate, 30, 95919605, https://doi.org/10.1175/JCLI-D-17-0397.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renault, L., M. J. Molemaker, J. C. McWilliams, A. F. Shchepetkin, F. Lemarié, D. Chelton, S. Illig, and A. Hall, 2016: Modulation of wind work by oceanic current interaction with the atmosphere. J. Phys. Oceanogr., 46, 16851704, https://doi.org/10.1175/JPO-D-15-0232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renault, L., J. McWilliams, and S. Masson, 2017: Satellite observations of imprint of oceanic current on wind stress by air-sea coupling. Sci. Rep., 7, 17747, https://doi.org/10.1038/s41598-017-17939-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, W., T. Smith, C. Liu, D. Chelton, K. Casey, and M. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampe, T., and S.-P. Xie, 2007: Mapping high sea winds from space: A global climatology. Bull. Amer. Meteor. Soc., 88, 19651978, https://doi.org/10.1175/BAMS-88-12-1965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, Y., and S. Minobe, 2015: Climatological mean features and interannual to decadal variability of ring formations in the Kuroshio Extension region. J. Oceanogr., 71, 499509, https://doi.org/10.1007/s10872-014-0270-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, H., A. Miller, and J. Norris, 2016: Eddy–wind interaction in the California Current System: Dynamics and impacts. J. Phys. Oceanogr., 46, 439459, https://doi.org/10.1175/JPO-D-15-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shan, X., Z. Jing, B. Gan, L. Wu, P. Chang, X. Ma, S. Wang, Z. Chen, and H. Yang, 2020: Surface heat flux induced by mesoscale eddies cools the Kuroshio-Oyashio Extension region. Geophys. Res. Lett., 47, e2019GL086050, https://doi.org/10.1029/2019GL086050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R., and et al. , 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319, https://doi.org/10.1016/j.dynatmoce.2008.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R., and et al. , 2014: A new synoptic scale resolving global climate simulation using the Community Earth System Model. J. Adv. Model. Earth Syst., 6, 10651094, https://doi.org/10.1002/2014MS000363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R., and et al. , 2010: The Parallel Ocean Program (POP) reference manual. Ocean Component of the Community Climate System Model (CCSM), 141 pp., https://www.cesm.ucar.edu/models/cesm1.1/pop2/doc/sci/POPRefManual.pdf.

  • Su, Z., J. Wang, P. Klein, A. F. Thompson, and D. Menemenlis, 2018: Ocean submesoscales as a key component of the global heat budget. Nat. Commun., 9, 775, https://doi.org/10.1038/s41467-018-02983-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taguchi, B., S. Xie, N. Schneider, M. Nonaka, H. Sasaki, and Y. Sasai, 2007: Decadal variability of the Kuroshio Extension: Observations and an eddy-resolving model hindcast. J. Climate, 20, 23572377, https://doi.org/10.1175/JCLI4142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J., and R. Ferrari, 2010: Buoyancy and wind-driven convection at mixed layer density fronts. J. Phys. Oceanogr., 40, 12221242, https://doi.org/10.1175/2010JPO4365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterman, S., and S. Jayne, 2011: Eddy–mean flow interaction in the along-stream development of a western boundary current jet: An idealized model study. J. Phys. Oceanogr., 41, 682707, https://doi.org/10.1175/2010JPO4477.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, C., X. Zhai, and X. Shang, 2016: Work done by atmospheric winds on mesoscale ocean eddies. Geophys. Res. Lett., 43, 12 17412 180, https://doi.org/10.1002/2016GL071275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., B. Qiu, P. Chang, L. Wu, S. Wang, Z. Chen, and Y. Yang, 2018: Decadal variability of eddy characteristics and energetics in the Kuroshio Extension: Unstable versus stable states. J. Geophys. Res. Oceans, 123, 66536669, https://doi.org/10.1029/2018JC014081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., P. Chang, B. Qiu, Q. Zhang, L. Wu, Z. Chen, and H. Wang, 2019: Mesoscale air–sea interaction and its role in eddy energy dissipation in the Kuroshio Extension. J. Climate, 32, 86598676, https://doi.org/10.1175/JCLI-D-19-0155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., and X. Liang, 2016: The instabilities and multiscale energetics underlying the mean–interannual–eddy interactions in the Kuroshio Extension region. J. Phys. Oceanogr., 46, 14771494, https://doi.org/10.1175/JPO-D-15-0226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., and X. Liang, 2018: On the seasonal eddy variability in the Kuroshio Extension. J. Phys. Oceanogr., 48, 16751689, https://doi.org/10.1175/JPO-D-18-0058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., X. Liang, B. Qiu, and S. Chen, 2017: On the decadal variability of the eddy kinetic energy in the Kuroshio Extension. J. Phys. Oceanogr., 47, 11691187, https://doi.org/10.1175/JPO-D-16-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasuda, I., 2003: Hydrographic structure and variability in the Kuroshio–Oyashio transition area. J. Oceanogr., 59, 389402, https://doi.org/10.1023/A:1025580313836.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 218 218 30
Full Text Views 96 96 11
PDF Downloads 112 112 14

Mesoscale Energy Balance and Air–Sea Interaction in the Kuroshio Extension: Low-Frequency versus High-Frequency Variability

View More View Less
  • 1 Physical Oceanography Laboratory/Institute for Advanced Ocean Study, Ocean University of China, Qingdao, China
  • | 2 Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
  • | 3 Department of Oceanography, Texas A&M University, College Station, Texas
  • | 4 Department of Atmospheric Sciences, Texas A&M University, College Station, Texas
  • | 5 International Laboratory for High-Resolution Earth System Prediction, Texas A&M University, College Station, Texas
  • | 6 Department of Oceanography, University of Hawai‘i at Mānoa, Honolulu, Hawaii
© Get Permissions
Restricted access

Abstract

Using eddy-resolving Community Earth System Model (CESM) simulations, this study investigates mesoscale energetics and air–sea interaction at two different time-scale windows in the Kuroshio Extension (KE) region. Based on an energy budget analysis, it is found that both baroclinic and barotropic pathways contribute to eddy energy generation within the low-frequency window (longer than 3 weeks) in this region, while both air–sea heat fluxes and wind stresses act as prominent eddy killers that remove energy from the ocean. In contrast, within the high-frequency window oceanic variability is mainly fed by baroclinic instability and regulated by turbulent thermal wind (TTW) processes, while the positive wind work is derived primarily from ageostrophic flow, i.e., Ekman drift, and along with air–sea heat fluxes has little influence on geostrophic mesoscale eddies.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Haiyuan Yang, yanghaiyuan@ouc.edu.cn

Abstract

Using eddy-resolving Community Earth System Model (CESM) simulations, this study investigates mesoscale energetics and air–sea interaction at two different time-scale windows in the Kuroshio Extension (KE) region. Based on an energy budget analysis, it is found that both baroclinic and barotropic pathways contribute to eddy energy generation within the low-frequency window (longer than 3 weeks) in this region, while both air–sea heat fluxes and wind stresses act as prominent eddy killers that remove energy from the ocean. In contrast, within the high-frequency window oceanic variability is mainly fed by baroclinic instability and regulated by turbulent thermal wind (TTW) processes, while the positive wind work is derived primarily from ageostrophic flow, i.e., Ekman drift, and along with air–sea heat fluxes has little influence on geostrophic mesoscale eddies.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Haiyuan Yang, yanghaiyuan@ouc.edu.cn
Save