• Alaka, M. A., 1961: The occurrence of anomalous winds and their significance. Mon. Wea. Rev., 89, 482494, https://doi.org/10.1175/1520-0493(1961)089<0482:TOOAWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behringer, D. W., R. L. Molinari, and J. F. Festa, 1977: The variability of anticyclonic current patterns in the Gulf of Mexico. J. Geophys. Res., 82, 54695476, https://doi.org/10.1029/JC082i034p05469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modell., 4, 5588, https://doi.org/10.1016/S1463-5003(01)00012-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brill, K., 2014: Revisiting an old concept: The gradient wind. Mon. Wea. Rev., 142, 14601471, https://doi.org/10.1175/MWR-D-13-00088.1.

  • Chassignet, E. P., and X. Xu, 2017: Impact of horizontal resolution (1/12° to 1/50°) on Gulf Stream separation, penetration, and variability. J. Phys. Oceanogr., 47, 19992021, https://doi.org/10.1175/JPO-D-17-0031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., D. B. Olson, and D. B. Boudra, 1990: Motion and evolution of oceanic rings in a numerical model and in observations. J. Geophys. Res., 95, 22 12122 140, https://doi.org/10.1029/JC095iC12p22121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., L. T. Smith, G. R. Halliwell, and R. Bleck, 2003: North Atlantic simulations with the Hybrid Coordinate Ocean Model (HYCOM): Impact of the vertical coordinate choice, reference pressure, and thermobaricity. J. Phys. Oceanogr., 33, 25042526, https://doi.org/10.1175/1520-0485(2003)033<2504:NASWTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/j.pocean.2011.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chérubin, L. M., Y. Morel, and E. P. Chassignet, 2006: Loop Current ring shedding: The formation of cyclones and the effect of topography. J. Phys. Oceanogr., 36, 569591, https://doi.org/10.1175/JPO2871.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cochrane, J. D., 1972: Separation of an anticyclone and subsequent developments in the Loop Current. Contributions on the Physical Oceanography of the Gulf of Mexico, Gulf Publishing Co., 91–106.

  • Cohen, Y., S. L. Durden, N. Harnik, and E. Heifetz, 2019: Relating observations of gradient nonbalance at the top of hurricanes with their warm core structures. Geophys. Res. Lett., 46, 11 51011 519, https://doi.org/10.1029/2019GL084248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohue, K. A., D. R. Watts, P. Hamilton, R. Leben, and M. Kennelly, 2016: Loop Current eddy formation and baroclinic instability. Dyn. Atmos. Oceans, 76, 195216, https://doi.org/10.1016/j.dynatmoce.2016.01.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglass, E. M., and J. G. Richman, 2015: Analysis of ageostrophy in strong surface eddies in the Atlantic Ocean. J. Geophys. Res. Oceans, 120, 14901507, https://doi.org/10.1002/2014JC010350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ezer, T., L.-Y. Ocy, W. Sturges, and H.-C. Lee, 2003: The variability of currents in the Yucatan Channel: Analysis of results from a numerical ocean model. J. Geophys. Res., 108, 3012, https://doi.org/10.1029/2002JC001509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flierl, G. R., 1981: Particle motions in large-amplitude wave fields. Geophys. Astrophys. Fluid Dyn., 18, 3974, https://doi.org/10.1080/03091928108208773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forristall, G. Z., K. J. Schaudt, and C. K. Cooper, 1992: Evolution and kinematics of a Loop Current eddy in the Gulf of Mexico during 1985. J. Geophys. Res., 97, 21732184, https://doi.org/10.1029/91JC02905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fratantoni, P. S., T. N. Lee, G. P. Podesta, and F. Muller-Karger, 1998: The influence of Loop Current perturbations on the formation and evolution of Tortugas eddies in the southern Straits of Florida. J. Geophys. Res., 103, 24 75924 779, https://doi.org/10.1029/98JC02147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia-Jove, M., J. Sheinbaum, and J. Jouanno, 2016: Sensitivity of Loop Current metrics and eddy detachments to different model configurations: The impact of topography and Caribbean perturbations. Atmoìsfera, 29, 235265, https://doi.org/10.20937/ATM.2016.29.03.05.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haller, G., and F. Beron-Vera, 2013: Coherent Lagrangian vortices: The black holes of turbulence. J. Fluid Mech., 731, R4, https://doi.org/10.1017/jfm.2013.391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, P., A. Lugo-Fernández, and J. Sheinbaum, 2016: A Loop Current experiment: Field and remote measurements. Dyn. Atmos. Oceans, 76, 156173, https://doi.org/10.1016/j.dynatmoce.2016.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hiron, L., B. Jaimes de la Cruz, and L. K. Shay, 2020: Evidence of Loop Current frontal eddy intensification through local linear and nonlinear interactions with the Loop Current. J. Geophys. Res. Oceans, 125, e2019JC015533, https://doi.org/10.1029/2019JC015533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kara, A. B., H. E. Hurlburt, and A. J. Wallcraft, 2005: Stability-dependent exchange coefficients for air–sea fluxes. J. Atmos. Oceanic Technol., 22, 10801094, https://doi.org/10.1175/JTECH1747.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knox, J. A., 2003: Inertial instability. Encyclopedia of the Atmospheric Sciences, J. R. Holton, J. Pyle, and J. A. Curry, Eds., Elsevier, 1004–1013.

    • Crossref
    • Export Citation
  • Knox, J. A., and P. R. Ohmann, 2006: Iterative solutions of the gradient wind equation. Comput. Geosci., 32, 656662, https://doi.org/10.1016/j.cageo.2005.09.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kontoyiannis, H., and D. R. Watts, 1990: Ageostrophy and pressure work in the Gulf stream at 73°W. J. Geophys. Res., 95, 22 20922 228, https://doi.org/10.1029/JC095iC12p22209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurita, H., K. Sasaki, H. Muroga, H. Ueda, and S. Wakamatsu, 1985: Long-range transport of air pollution under light gradient wind conditions. J. Climate Appl. Meteor., 24, 425434, https://doi.org/10.1175/1520-0450(1985)024<0425:LRTOAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Hénaff, M., V. H. Kourafalou, Y. Morel, and A. Srinivasan, 2012: Simulating the dynamics and intensification of cyclonic Loop Current frontal eddies in the Gulf of Mexico. J. Geophys. Res., 117, C02034, https://doi.org/10.1029/2011JC007279.

    • Search Google Scholar
    • Export Citation
  • Le Hénaff, M., V. H. Kourafalou, R. Dussurget, and R. Lumpkin, 2014: Cyclonic activity in the eastern Gulf of Mexico: Characterization from along-track altimetry and in situ drifter trajectories. Prog. Oceanogr., 120, 120138, https://doi.org/10.1016/j.pocean.2013.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leben, R. R., 2005: Altimeter-derived Loop Current metrics. Circulation in the Gulf of Mexico: Observations and Models, Geophys. Monogr., Vol. 161, Amer. Geophys. Union, 181–202, https://doi.org/10.1029/161GM15.

    • Crossref
    • Export Citation
  • Lee, H.-C., and G. L. Mellor, 2003: Numerical simulation of the Gulf Stream System: The Loop Current and the deep circulation. J. Geophys. Res., 108, 3043, https://doi.org/10.1029/2001JC001074.

    • Search Google Scholar
    • Export Citation
  • Lee, T. N., K. Leaman, E. Williams, T. Berger, and L. Atkinson, 1995: Florida current meanders and gyre formation in the southern Straits of Florida. J. Geophys. Res., 100, 86078620, https://doi.org/10.1029/94JC02795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and G. R. Flierl, 1979: On the evolution of isolated, nonlinear vortices. J. Phys. Oceanogr., 9, 11551182, https://doi.org/10.1175/1520-0485(1979)009<1155:OTEOIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oey, L.-Y., H.-C. Lee, and W. J. Schmitz Jr., 2003: Effects of winds and Caribbean eddies on the frequency of Loop Current eddy shedding: A numerical model study. J. Geophys. Res., 108, 3324, https://doi.org/10.1029/2002JC001698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oey, L.-Y., T. Ezer, and H.-C. Lee, 2005: Loop Current, rings and related circulation in the Gulf of Mexico: A review of numerical models and future challenges. Circulation in the Gulf of Mexico: Observations and Models, Geophys. Monogr., Vol. 161, Amer. Geophys. Union, 31–56, https://doi.org/doi:10.1029/161GM04.

    • Crossref
    • Export Citation
  • Olson, D. B., 1991: Rings in the ocean. Annu. Rev. Earth Planet. Sci., 19, 283311, https://doi.org/10.1146/annurev.ea.19.050191.001435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olson, D. B., R. W. Schmitt, M. A. Kennelly, and T. M. Joyce, 1985: A two-layer diagnostic model of the long term physical evolution of warm core ring 82-B. J. Geophys. Res., 90, 88138822, https://doi.org/10.1029/JC090iC05p08813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penven, P., I. Halo, S. Pous, and L. Marié, 2014: Cyclogeostrophic balance in the Mozambique channel. J. Geophys. Res. Oceans, 119, 10541067, https://doi.org/10.1002/2013JC009528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitz, W. J., Jr., 2005: Cyclones and westward propagation in the shedding of anticyclonic rings from the Loop Current. Circulation in the Gulf of Mexico: Observations and Models, Geophys. Monogr., Vol. 161, Amer. Geophys. Union, 241–261, https://doi.org/10.1029/161GM18.

    • Crossref
    • Export Citation
  • Shay, L. K., J. Martinez-Pedraja, T. M. Cook, B. K. Haus, and R. H. Weisberg, 2007: High-frequency radar mapping of surface currents using WERA. J. Atmos. Oceanic Technol., 24, 484503, https://doi.org/10.1175/JTECH1985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, L. K., J. Brewster, B. Jaimes, C. Gordon, K. Fennel, P. Furze, H. Fargher, and R. He, 2019: Physical and biochemical variability from APEX-EM floats. Proc. 12th IEEE/OES Current, Waves and Turbulence Measurement, San Diego, CA, IEEE, 6 pp., https://doi.org/10.1109/CWTM43797.2019.8955168.

    • Crossref
    • Export Citation
  • Sturges, W., and R. Leben, 2000: Frequency of ring separations from the Loop Current in the Gulf of Mexico: A revised estimate. J. Phys. Oceanogr., 30, 18141819, https://doi.org/10.1175/1520-0485(2000)030<1814:FORSFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, C. F., D. M. Schultz, and G. Vaughan, 2018: A global climatology of tropospheric inertial instability. J. Atmos. Sci., 75, 805825, https://doi.org/10.1175/JAS-D-17-0062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velissariou, P. 2014: Gulf of Mexico high-resolution (0.01° x 0.01°) bathymetric grid - version 2.0. Gulf of Mexico Research Initiative Information and Data Cooperative, Harte Research Institute, Texas A&M University–Corpus Christi, accessed 15 June 2020, https://doi.org/10.7266/N7X63JZ5.

    • Crossref
    • Export Citation
  • Vukovich, F. M., 1988: Loop Current boundary variations. J. Geophys. Res., 93, 15 58515 591, https://doi.org/10.1029/JC093iC12p15585.

  • Vukovich, F. M., and G. A. Maul, 1985: Cyclonic eddies in the eastern Gulf of Mexico. J. Phys. Oceanogr., 15, 105117, https://doi.org/10.1175/1520-0485(1985)015<0105:CEITEG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vukovich, F. M., B. W. Crissman, M. Bushnell, and W. J. King, 1979: Some aspects of the oceanography of the Gulf of Mexico using satellite and in situ data. J. Geophys. Res., 84, 77497768, https://doi.org/10.1029/JC084iC12p07749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, N. D., and et al. , 2011: Impacts of Loop Current frontal cyclonic eddies and wind forcing on the 2010 Gulf of Mexico oil spill. Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise, Geophys. Monogr., Vol. 195, Amer. Geophys. Union, 103–116, https://doi.org/10.1029/2011GM001120.

    • Crossref
    • Export Citation
  • Wallace, J. M., and P. V. Hobbs, 2006: Atmospheric Science: An Introductory Survey. 2nd ed. Elsevier, 504 pp.

  • Yang, Y., R. H. Weisberg, Y. Liu, and X. S. Liang, 2020: Instabilities and multiscale interactions underlying the Loop Current eddy shedding in the Gulf of Mexico. J. Phys. Oceanogr., 50, 12891317, https://doi.org/10.1175/JPO-D-19-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zavala-Hidalgo, J., S. L. Morey, and J. J. O’Brien, 2003: Cyclonic eddies northeast of the Campeche Bank from altimetry data. J. Phys. Oceanogr., 33, 623629, https://doi.org/10.1175/1520-0485(2003)033<0623:CENOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 295 295 31
Full Text Views 80 80 4
PDF Downloads 94 94 6

Study of Ageostrophy during Strong, Nonlinear Eddy-Front Interaction in the Gulf of Mexico

View More View Less
  • 1 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The Loop Current (LC) system has long been assumed to be close to geostrophic balance despite its strong flow and the development of large meanders and strong frontal eddies during unstable phases. The region between the LC meanders and its frontal eddies was shown to have high Rossby numbers indicating nonlinearity; however, the effect of the nonlinear term on the flow has not been studied so far. In this study, the ageostrophy of the LC meanders is assessed using a high-resolution numerical model and geostrophic velocities from altimetry. A formula to compute the radius of curvature of the flow from the velocity field is also presented. The results indicate that during strong meandering, especially before and during LC shedding and in the presence of frontal eddies, the centrifugal force becomes as important as the Coriolis force and the pressure gradient force: LC meanders are in gradient-wind balance. The centrifugal force modulates the balance and modifies the flow speed, resulting in a subgeostrophic flow in the LC meander trough around the LC frontal eddies and supergeostrophic flow in the LC meander crest. The same pattern is found when correcting the geostrophic velocities from altimetry to account for the centrifugal force. The ageostrophic percentage in the cyclonic and anticyclonic meanders is 47% ± 1% and 78% ± 8% in the model and 31% ± 3% and 78% ± 29% in the altimetry dataset, respectively. Thus, the ageostrophic velocity is an important component of the LC flow and cannot be neglected when studying the LC system.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Luna Hiron, lhiron@rsmas.miami.edu

Abstract

The Loop Current (LC) system has long been assumed to be close to geostrophic balance despite its strong flow and the development of large meanders and strong frontal eddies during unstable phases. The region between the LC meanders and its frontal eddies was shown to have high Rossby numbers indicating nonlinearity; however, the effect of the nonlinear term on the flow has not been studied so far. In this study, the ageostrophy of the LC meanders is assessed using a high-resolution numerical model and geostrophic velocities from altimetry. A formula to compute the radius of curvature of the flow from the velocity field is also presented. The results indicate that during strong meandering, especially before and during LC shedding and in the presence of frontal eddies, the centrifugal force becomes as important as the Coriolis force and the pressure gradient force: LC meanders are in gradient-wind balance. The centrifugal force modulates the balance and modifies the flow speed, resulting in a subgeostrophic flow in the LC meander trough around the LC frontal eddies and supergeostrophic flow in the LC meander crest. The same pattern is found when correcting the geostrophic velocities from altimetry to account for the centrifugal force. The ageostrophic percentage in the cyclonic and anticyclonic meanders is 47% ± 1% and 78% ± 8% in the model and 31% ± 3% and 78% ± 29% in the altimetry dataset, respectively. Thus, the ageostrophic velocity is an important component of the LC flow and cannot be neglected when studying the LC system.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Luna Hiron, lhiron@rsmas.miami.edu
Save