• Adams, J. K., and V. T. Buchwald, 1969: The generation of continental shelf waves. J. Fluid Mech., 35, 815826, https://doi.org/10.1017/S0022112069001455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Almansi, M., T. W. N. Haine, R. S. Pickart, M. G. Magaldi, R. Gelderloos, and D. Mastropole, 2017: High-frequency variability in the circulation and hydrography of the Denmark Strait Overflow from a high-resolution numerical model. J. Phys. Oceanogr., 47, 29993013, https://doi.org/10.1175/JPO-D-17-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Almansi, M., R. Gelderloos, T. Haine, A. Saberi, and A. Siddiqui, 2019: OceanSpy: A Python package to facilitate ocean model data analysis and visualization. J. Open Source Softw., 4, 1506, https://doi.org/10.21105/joss.01506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Almansi, M., T. W. N. Haine, R. Gelderloos, and R. S. Pickart, 2020: Evolution of Denmark Strait overflow cyclones and their relationship to overflow surges. Geophys. Res. Lett., 47, e2019GL086759, https://doi.org/10.1029/2019GL086759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bacon, S., G. Reverdin, I. G. Rigor, and H. M. Snaith, 2002: A freshwater jet on the east Greenland shelf. J. Geophys. Res., 107, 3068, https://doi.org/10.1029/2001JC000935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bamber, J., M. Van Den Broeke, J. Ettema, J. Lenaerts, and E. Rignot, 2012: Recent large increases in freshwater fluxes from Greenland into the North Atlantic. Geophys. Res. Lett., 39, L19501, https://doi.org/10.1029/2012GL052552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bras, I. A.-A. L., F. Straneo, J. Holte, and N. P. Holliday, 2018: Seasonality of freshwater in the East Greenland Current system from 2014 to 2016. J. Geophys. Res. Oceans, 123, 88288848, https://doi.org/10.1029/2018JC014511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 1982: The effect of bottom friction on low-frequency coastal trapped waves. J. Phys. Oceanogr., 12, 127133, https://doi.org/10.1175/1520-0485(1982)012<0127:TEOBFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 2006: Coastal-trapped waves with finite bottom friction. Dyn. Atmos. Oceans, 41, 172190, https://doi.org/10.1016/j.dynatmoce.2006.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 2018: bigr*.m: Stable coastal-trapped waves with stratification, topography and mean flow in Matlab. Woods Hole Open Access Server Doc., 16 pp., https://doi.org/10.1575/1912/10527.

    • Crossref
    • Export Citation
  • Bromwich, D. H., and et al. , 2018: The Arctic System Reanalysis, version 2. Bull. Amer. Meteor. Soc., 99, 805828, https://doi.org/10.1175/BAMS-D-16-0215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruce, J. G., 1995: Eddies southwest of Denmark Strait. Deep-Sea Res. I, 42, 1329, https://doi.org/10.1016/0967-0637(94)00040-Y.

  • Buchwald, V. T., and J. K. Adams, 1968: The propagation of continental shelf waves. Proc. Roy. Soc. London, 305A, 235250, https://doi.org/10.1098/rspa.1968.0115.

    • Search Google Scholar
    • Export Citation
  • Caldwell, D. R., D. L. Cutchin, and M. S. Longuet-Higgins, 1972: Some model experiments on continental shelf waves. J. Mar. Res., 30, 3955.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., 1977: Observational and numerical evidence for wind-forced coastal trapped waves. J. Phys. Oceanogr., 7, 231247, https://doi.org/10.1175/1520-0485(1977)007<0231:OANEFW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummings, J. A., and O. M. Smedstad, 2013: Variational data assimilation for the global ocean. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, Vol. II, S. K. Park and L. Xu, Eds., Springer, 303–343, https://doi.org/10.1007/978-3-642-35088-7_13.

    • Crossref
    • Export Citation
  • Cutchin, D. L., and R. L. Smith, 1973: Continental shelf waves: Low-frequency variations in sea level and currents over the Oregon continental shelf. J. Phys. Oceanogr., 3, 7382, https://doi.org/10.1175/1520-0485(1973)003<0073:CSWLFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dale, A. C., J. M. Huthnance, and T. J. Sherwin, 2001: Coastal-trapped waves and tides at near-inertial frequencies. J. Phys. Oceanogr., 31, 29582970, https://doi.org/10.1175/1520-0485(2001)031<2958:CTWATA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., M. Martin, J. Stark, J. Roberts-Jones, E. Fiedler, and W. Wimmer, 2012: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ., 116, 140158, https://doi.org/10.1016/j.rse.2010.10.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, J., and et al. , 2015: Intra-seasonal variability of the DWBC in the western subpolar North Atlantic. Prog. Oceanogr., 132, 233249, https://doi.org/10.1016/j.pocean.2014.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foukal, N. P., R. Gelderloos, and R. S. Pickart, 2020: A continuous pathway for fresh water along the East Greenland shelf. Sci. Adv., 6, eabc4254, https://doi.org/10.1126/sciadv.abc4254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraser, N. J., and M. E. Inall, 2018: Influence of barrier wind forcing on heat delivery toward the Greenland ice sheet. J. Geophys. Res. Oceans, 123, 25132538, https://doi.org/10.1002/2017JC013464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraser, N. J., M. E. Inall, M. G. Magaldi, T. W. Haine, and S. C. Jones, 2018: Wintertime fjord-shelf interaction and ice sheet melting in southeast Greenland. J. Geophys. Res. Oceans, 123, 91569177, https://doi.org/10.1029/2018JC014435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelderloos, R., T. W. N. Haine, I. M. Koszalka, and M. G. Magaldi, 2017: Seasonal variability in warm-water inflow toward Kangerdlugssuaq Fjord. J. Phys. Oceanogr., 47, 16851699, https://doi.org/10.1175/JPO-D-16-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., and A. J. Clarke, 1974: Wind-induced upwelling, coastal currents and sea-level changes. Deep-Sea Res. Oceanogr. Abstr., 21, 325345, https://doi.org/10.1016/0011-7471(74)90038-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grinsted, A., J. C. Moore, and S. Jevrejeva, 2004: Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes Geophys., 11, 561566, https://doi.org/10.5194/npg-11-561-2004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haine, T. W. N., 2010: High-frequency fluctuations in Denmark Strait transport. Geophys. Res. Lett., 37, L14601, https://doi.org/10.1029/2010GL043272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamon, B. V., 1962: The spectrums of mean sea level at sydney, Coff’s Harbour, and Lord Howe Island. J. Geophys. Res., 67, 51475155, https://doi.org/10.1029/JZ067i013p05147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamon, B. V., 1963: Correction to ‘The spectrums of mean sea level at Sydney, Coff’s Harbour, and Lord Howe Island’. J. Geophys. Res., 68, 4635, https://doi.org/10.1029/JZ068i015p04635.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harden, B. E., and R. S. Pickart, 2018: High-frequency variability in the North Icelandic jet. J. Mar. Res., 76, 4762, https://doi.org/10.1357/002224018824845910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harden, B. E., R. S. Pickart, and I. A. Renfrew, 2014a: Offshore transport of dense water from the East Greenland shelf. J. Phys. Oceanogr., 44, 229245, https://doi.org/10.1175/JPO-D-12-0218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harden, B. E., F. Straneo, and D. A. Sutherland, 2014b: Moored observations of synoptic and seasonal variability in the East Greenland Coastal Current. J. Geophys. Res. Oceans, 119, 88388857, https://doi.org/10.1002/2014JC010134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harden, B. E., and et al. , 2016: Upstream sources of the Denmark Strait Overflow: Observations from a high-resolution mooring array. Deep-Sea Res. I, 112, 94112, https://doi.org/10.1016/j.dsr.2016.02.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Håvik, L., R. S. Pickart, K. Våge, D. Torres, A. M. Thurnherr, A. Beszczynska-Möller, W. Walczowski, and W.-J. von Appen, 2017: Evolution of the East Greenland Current from Fram Strait to Denmark Strait: Synoptic measurements from summer 2012. J. Geophys. Res. Oceans, 122, 19741994, https://doi.org/10.1002/2016JC012228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Håvik, L., M. Almansi, K. Våge, and T. W. N. Haine, 2019: Atlantic-origin overflow water in the East Greenland Current. J. Phys. Oceanogr., 49, 22552269, do, https://doi.org/10.1175/JPO-D-18-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heimbach, P., D. Menemenlis, M. Losch, J. M. Campin, and C. Hill, 2010: On the formulation of sea-ice models. Part 2: Lessons from multi-year adjoint sea-ice export sensitivities through the Canadian Arctic Archipelago. Ocean Modell., 33, 145158, https://doi.org/10.1016/j.ocemod.2010.02.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huthnance, J. M., 1978: On coastal trapped waves: Analysis and numerical calculation by inverse iteration. J. Phys. Oceanogr., 8, 7492, https://doi.org/10.1175/1520-0485(1978)008<0074:OCTWAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inall, M. E., F. Nilsen, F. R. Cottier, and R. Daae, 2015: Shelf/fjord exchange driven by coastal-trapped waves in the Arctic. J. Geophys. Res. Oceans, 120, 82838303, https://doi.org/10.1002/2015JC011277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, R. H., F. Straneo, and D. A. Sutherland, 2014: Externally forced fluctuations in ocean temperature at Greenland glaciers in non-summer months. Nat. Geosci., 7, 503508, https://doi.org/10.1038/ngeo2186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, R. H., S. J. Lentz, and F. Straneo, 2018: The dynamics of shelf forcing in Greenlandic Fjords. J. Phys. Oceanogr., 48, 27992827, https://doi.org/10.1175/JPO-D-18-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jochumsen, K., M. Moritz, N. Nunes, D. Quadfasel, K. M. H. Larsen, B. Hansen, H. Valdimarsson, and S. Jonsson, 2017: Revised transport estimates of the Denmark Strait overflow. J. Geophys. Res. Oceans, 122, 34343450, https://doi.org/10.1002/2017JC012803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, E. R., and S. R. Clarke, 2001: Rossby wave hydraulics. Annu. Rev. Fluid Mech., 33, 207230, https://doi.org/10.1146/annurev.fluid.33.1.207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katsman, C. A., S. S. Drijfhout, H. A. Dijkstra, and M. A. Spall, 2018: Sinking of dense North Atlantic waters in a global ocean model: Location and controls. J. Geophys. Res. Oceans, 123, 35633576, https://doi.org/10.1029/2017JC013329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koszalka, I. M., T. W. N. Haine, and M. G. Magaldi, 2013: Fates and travel times of Denmark Strait overflow water in the Irminger Basin. J. Phys. Oceanogr., 43, 26112628, https://doi.org/10.1175/JPO-D-13-023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, J. M., 2019: jlab: A data analysis package for Matlab, v. 1.6.6. http://www.jmlilly.net/software.

  • Losch, M., D. Menemenlis, J. M. Campin, P. Heimbach, and C. Hill, 2010: On the formulation of sea-ice models. Part 1: Effects of different solver implementations and parameterizations. Ocean Modell., 33, 129144, https://doi.org/10.1016/j.ocemod.2009.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magaldi, M. G., T. W. N. Haine, and R. S. Pickart, 2011: On the nature and variability of the East Greenland spill jet: A case study in summer 2003. J. Phys. Oceanogr., 41, 23072327, https://doi.org/10.1175/JPO-D-10-05004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mooers, C. N. K., and R. L. Smith, 1968: Continental shelf waves off Oregon. J. Geophys. Res., 73, 549557, https://doi.org/10.1029/JB073i002p00549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mysak, L. A., 1967a: On the theory of continental shelf waves. J. Mar. Res., 25, 205227.

  • Mysak, L. A., 1967b: On the very low frequency spectrum of the sea level on a continental shelf. J. Geophys. Res., 72, 30433047, https://doi.org/10.1029/JZ072i012p03043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mysak, L. A., 1980: Topographically trapped waves. Annu. Rev. Fluid Mech., 12, 4576, https://doi.org/10.1146/annurev.fl.12.010180.000401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, A. T., D. Menemenlis, and R. Kwok, 2009: Improved modeling of the arctic halocline with a subgrid-scale brine rejection parameterization. J. Geophys. Res., 114, C11014, https://doi.org/10.1029/2008JC005121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., and L. A. Mysak, 1971: Barotropic waves along an eastern continental shelf. Geophys. Fluid Dyn., 2, 273288, https://doi.org/10.1080/03091927108236063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noël, B., W. Jan Van De Berg, H. MacHguth, S. Lhermitte, I. Howat, X. Fettweis, and M. R. Van Den Broeke, 2016: A daily, 1 km resolution data set of downscaled Greenland ice sheet surface mass balance (1958-2015). Cryosphere, 10, 23612377, https://doi.org/10.5194/tc-10-2361-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pacini, A., and et al. , 2020: Mean conditions and seasonality of the West Greenland boundary current system near cape farewell. J. Phys. Oceanogr., 50, 28492871, https://doi.org/10.1175/JPO-D-20-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawlowicz, R., B. Beardsley, and S. Lentz, 2002: Classical tidal harmonic analysis including error estimates in MATLAB using T-TIDE. Comput. Geosci., 28, 929937, https://doi.org/10.1016/S0098-3004(02)00013-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, G. N., I. A. Renfrew, and G. W. K. Moore, 2009: An overview of barrier winds off southeastern Greenland during the Greenland Flow Distortion experiment. Quart. J. Roy. Meteor. Soc., 135, 19501967, https://doi.org/10.1002/qj.455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P., 1970: Edge-, bottom-, and Rossby waves in a rotating stratified fluid. Geophys. Fluid Dyn., 1, 273302, https://doi.org/10.1080/03091927009365776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, A. R., 1964: Continental shelf waves and the response of sea level to weather systems. J. Geophys. Res., 69, 367368, https://doi.org/10.1029/JZ069i002p00367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodney, J. T., and E. R. Johnson, 2012: Localisation of coastal trapped waves by longshore variations in bottom topography. Cont. Shelf Res., 32, 130137, https://doi.org/10.1016/j.csr.2011.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodney, J. T., and E. R. Johnson, 2014: Meanders and eddies from topographic transformation of coastal-trapped waves. J. Phys. Oceanogr., 44, 11331150, https://doi.org/10.1175/JPO-D-12-0224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodney, J. T., and E. R. Johnson, 2015: Localised continental shelf waves: Geometric effects and resonant forcing. J. Fluid Mech., 785, 5477, https://doi.org/10.1017/jfm.2015.588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudels, B., E. Fahrbach, J. Meincke, G. Budeéus, and P. Eriksson, 2002: The East Greenland current and its contribution to the Denmark Strait overflow. ICES J. Mar. Sci., 59, 11331154, https://doi.org/10.1006/jmsc.2002.1284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saberi, A., T. W. N. Haine, R. Gelderloos, M. F. de Jong, H. Furey, and A. Bower, 2020: Lagrangian perspective on the origins of Denmark Strait Overflow. J. Phys. Oceanogr., 50, 23932414, https://doi.org/10.1175/JPO-D-19-0210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakov, P., F. Counillon, L. Bertino, K. A. Lister, P. R. Oke, and A. Korablev, 2012: TOPAZ4: An ocean-sea ice data assimilation system for the North Atlantic and Arctic. Ocean Sci., 8, 633656, https://doi.org/10.5194/os-8-633-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., and J. Pedlosky, 2018: Shelf–open ocean exchange forced by wind jets. J. Phys. Oceanogr., 48, 163174, https://doi.org/10.1175/JPO-D-17-0161.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., R. S. Pickart, P. Lin, W.-J. V. Appen, D. Mastropole, H. Valdimarsson, T. W. N. Haine, and M. Almansi, 2019: Frontogenesis and variability in Denmark Strait and its influence on overflow water. J. Phys. Oceanogr., 49, 18891904, https://doi.org/10.1175/JPO-D-19-0053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, D. J., 1982: Spectrum estimation and harmonic analysis. Proc. IEEE, 70, 10551096, https://doi.org/10.1109/PROC.1982.12433.

  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Appen, W.-J., R. S. Pickart, K. H. Brink, and T. W. N. Haine, 2014a: Water column structure and statistics of Denmark Strait overflow water cyclones. Deep-Sea Res. I, 84, 110126, https://doi.org/10.1016/j.dsr.2013.10.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Appen, W.-J., and et al. , 2014b: The East Greenland Spill Jet as an important component of the Atlantic Meridional Overturning Circulation. Deep-Sea Res. I, 92, 7584, https://doi.org/10.1016/j.dsr.2014.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 234 234 33
Full Text Views 423 423 11
PDF Downloads 373 373 18

Coastal Trapped Waves and Other Subinertial Variability along the Southeast Greenland Coast in a Realistic Numerical Simulation

View More View Less
  • 1 Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Ocean currents along the southeast Greenland coast play an important role in the climate system. They carry dense water over the Denmark Strait sill, freshwater from the Arctic and the Greenland Ice Sheet into the subpolar ocean, and warm Atlantic Ocean water into Greenland’s fjords, where it can interact with outlet glaciers. Observational evidence from moorings shows that the circulation in this region displays substantial subinertial variability (typically with periods of several days). For the dense water flowing over the Denmark Strait sill, this variability augments the time-mean transport. It has been suggested that the subinertial variability found in observations is associated with coastal trapped waves, whose properties depend on bathymetry, stratification, and the mean flow. Here, we use the output of a high-resolution realistic simulation to diagnose and characterize subinertial variability in sea surface height and velocity along the coast. The results show that the subinertial signals are coherent over hundreds of kilometers along the shelf. We find coastal trapped waves on the shelf and along the shelf break in two subinertial frequency bands—at periods of 1–3 and 5–18 days—that are consistent with a combination of mode-I waves and higher modes. Furthermore, we find that northeasterly barrier winds may trigger the 5–18-day shelf waves, whereas the 1–3-day variability is linked to high wind speeds over Sermilik Deep.

Current affiliation: National Oceanography Centre, Southampton, United Kingdom.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-20-0239.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Renske Gelderloos, rgelder2@jhu.edu

Abstract

Ocean currents along the southeast Greenland coast play an important role in the climate system. They carry dense water over the Denmark Strait sill, freshwater from the Arctic and the Greenland Ice Sheet into the subpolar ocean, and warm Atlantic Ocean water into Greenland’s fjords, where it can interact with outlet glaciers. Observational evidence from moorings shows that the circulation in this region displays substantial subinertial variability (typically with periods of several days). For the dense water flowing over the Denmark Strait sill, this variability augments the time-mean transport. It has been suggested that the subinertial variability found in observations is associated with coastal trapped waves, whose properties depend on bathymetry, stratification, and the mean flow. Here, we use the output of a high-resolution realistic simulation to diagnose and characterize subinertial variability in sea surface height and velocity along the coast. The results show that the subinertial signals are coherent over hundreds of kilometers along the shelf. We find coastal trapped waves on the shelf and along the shelf break in two subinertial frequency bands—at periods of 1–3 and 5–18 days—that are consistent with a combination of mode-I waves and higher modes. Furthermore, we find that northeasterly barrier winds may trigger the 5–18-day shelf waves, whereas the 1–3-day variability is linked to high wind speeds over Sermilik Deep.

Current affiliation: National Oceanography Centre, Southampton, United Kingdom.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-20-0239.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Renske Gelderloos, rgelder2@jhu.edu

Supplementary Materials

    • Supplemental Materials (ZIP 87.25 MB)
Save