• Bamber, J. L., A. J. Tedstone, M. D. King, I. M. Howat, E. M. Enderlin, M. R. van den Broeke, and B. Noel, 2018: Land ice freshwater budget of the Arctic and North Atlantic Oceans: 1. Data, methods, and results. J. Geophys. Res. Oceans, 123, 18271837, https://doi.org/10.1002/2017JC013605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartholomaus, T. C., and et al. , 2016: Contrasts in the response of adjacent fjords and glaciers to ice-sheet surface melt in West Greenland. Ann. Glaciol., 57, 2538, https://doi.org/10.1017/aog.2016.19.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beaird, N., F. Straneo, and W. Jenkins, 2017: Characteristics of meltwater export from Jakobshavn Isbrae and Ilulissat Icefjord. Ann. Glaciol., 58, 107117, https://doi.org/10.1017/aog.2017.19.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carroll, D., and et al. , 2016: The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords. Geophys. Res. Lett., 43, 97399748, https://doi.org/10.1002/2016GL070170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carroll, D., D. A. Sutherland, E. Shroyer, J. D. Nash, G. Catania, and L. A. Stearns, 2017: Subglacial discharge-driven renewal of tidewater glacier fjords. J. Geophys. Res. Oceans, 122, 66116629, https://doi.org/10.1002/2017JC012962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, V. W., 2014: Greenland ice sheet hydrology: A review. Prog. Phys. Geogr., 38, 1954, https://doi.org/10.1177/0309133313507075.

  • Cook, A. J., P. R. Holland, M. P. Meredith, T. Murray, A. Luckman, and D. G. Vaughan, 2016: Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science, 353, 283286, https://doi.org/10.1126/science.aae0017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cowton, T., D. Slater, A. Sole, D. Goldberg, and P. Nienow, 2015: Modeling the impact of glacial runoff on fjord circulation and submarine melt rate using a new subgrid-scale parameterization for glacial plumes. J. Geophys. Res. Oceans, 120, 796812, https://doi.org/10.1002/2014JC010324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Rydt, J., P. R. Holland, P. Dutrieux, and A. Jenkins, 2014: Geometric and oceanographic controls on melting beneath Pine Island Glacier. J. Geophys. Res. Oceans, 119, 24202438, https://doi.org/10.1002/2013JC009513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraser, N. J., M. E. Inall, M. G. Magaldi, T. W. N. Haine, and S. C. Jones, 2018: Wintertime fjord-shelf interaction and ice sheet melting in southeast Greenland. J. Geophys. Res. Oceans, 123, 91569177, https://doi.org/10.1029/2018JC014435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fried, M. J., and et al. , 2015: Distributed subglacial discharge drives significant submarine melt at a Greenland tidewater glacier. Geophys. Res. Lett., 42, 93289336, https://doi.org/10.1002/2015GL065806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., 2011: The Gent–McWilliams parameterization: 20/20 hindsight. Ocean Modell., 39, 29, https://doi.org/10.1016/j.ocemod.2010.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gladish, C. V., D. M. Holland, A. Rosing-Asvid, J. W. Behrens, and J. Boje, 2015: Oceanic boundary conditions for Jakobshavn Glacier. Part I: Variability and renewal of Ilulissat Icefjord waters, 2001–14. J. Phys. Oceanogr., 45, 332, https://doi.org/10.1175/JPO-D-14-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S., and R. Hallberg, 2000: Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon. Wea. Rev., 128, 29352946, https://doi.org/10.1175/1520-0493(2000)128<2935:BFWASL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hellmer, H. H., and D. J. Olbers, 1989: A two-dimensional model for the thermohaline circulation under an ice shelf. Antarct. Sci., 1, 325336, https://doi.org/10.1017/S0954102089000490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., W. K. Dewar, P. Berloff, and M. L. Ward, 2011: Kelvin wave hydraulic control induced by interactions between vortices and topography. J. Fluid Mech., 687, 194208, https://doi.org/10.1017/jfm.2011.344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, D. M., and A. Jenkins, 1999: Modeling thermodynamic ice-ocean interactions at the base of an ice shelf. J. Phys. Oceanogr., 29, 17871800, https://doi.org/10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inall, M. E., T. Murray, F. R. Cottier, K. Scharrer, T. J. Boyd, K. J. Heywood, and S. L. Bevan, 2014: Oceanic heat delivery via Kangerdlugssuaq Fjord to the south-east Greenland ice sheet. J. Geophys. Res. Oceans, 119, 631645, https://doi.org/10.1002/2013JC009295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2019: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. H.-O. Pörtner et al., Eds., IPCC, 755 pp., https://www.ipcc.ch/srocc/.

  • Jackson, R. H., and et al. , 2017: Near-glacier surveying of a subglacial discharge plume: Implications for plume parameterizations. Geophys. Res. Lett., 44, 68866894, https://doi.org/10.1002/2017GL073602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, R. H., S. J. Lentz, and F. Straneo, 2018: The dynamics of shelf forcing in Greenlandic fjords. J. Phys. Oceanogr., 48, 27992827, https://doi.org/10.1175/JPO-D-18-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, R. H., and et al. , 2020: Meltwater intrusions reveal mechanisms for rapid submarine melt at a tidewater glacier. Geophys. Res. Lett., 47, e2019GL085335, https://doi.org/10.1029/2019GL085335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakacki, J., A. Przyborska, S. Kosecki, A. Sundfjord, and J. Albretsen, 2017: Modelling of the Svalbard fjord Hornsund. Oceanologia, 59, 473495, https://doi.org/10.1016/j.oceano.2017.04.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, A., 2011: Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. J. Phys. Oceanogr., 41, 22792294, https://doi.org/10.1175/JPO-D-11-03.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, A., P. Dutrieux, S. Jacobs, S. McPhail, J. Perrett, A. Webb, and D. White, 2010: Observations beneath pine Island Glacier in West Antarctica and implications for its retreat. Nat. Geosci., 3, 468472, https://doi.org/10.1038/ngeo890.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T., D. E. Waliser, J.-L. F. Li, F. W. Landerer, and M. M. Gierach, 2013: Evaluation of CMIP3 and CMIP5 wind stress climatology using Satellite measurements and atmospheric reanalysis products. J. Climate, 26, 58105826, https://doi.org/10.1175/JCLI-D-12-00591.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindeman, M. R., F. Straneo, N. J. Wilson, J. M. Toole, R. A. Krishfield, N. L. Beaird, T. Kanzow, and J. Schaffer, 2020: Ocean circulation and variability beneath Nioghalvfjerdsbrae (79 North Glacier) ice tongue. J. Geophys. Res. Oceans, 125, e2020JC016091, https://doi.org/10.1029/2020JC016091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Linden, P. F., 2000: Convection in the environment. Perspectives in Fluid Dynamics, G. K. Batchelor, H. K. Moffat, and M. G. Worster, Eds., Cambridge University Press, 289–345.

  • Magorrian, S. J., and A. J. Wells, 2016: Turbulent plumes from a glacier terminus melting in a stratified ocean. J. Geophys. Res. Oceans, 121, 46704696, https://doi.org/10.1002/2015JC011160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moffat, C., 2014: Wind-driven modulation of warm water supply to a proglacial fjord, Jorge Montt Glacier, Patagonia. Geophys. Res. Lett., 41, 39433950, https://doi.org/10.1002/2014GL060071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moffat, C., B. Owens, and R. C. Beardsley, 2009: On the characteristics of circumpolar deep water intrusions to the West Antarctic Peninsula continental shelf. J. Geophys. Res., 114, C05017, https://doi.org/10.1029/2008JC004955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morlighem, M., and et al. , 2017: BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo Sounding combined with mass conservation. Geophys. Res. Lett., 44, 11 05111 061, https://doi.org/10.1002/2017GL074954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morton, B. R., G. I. Taylor, and J. S. Turner, 1956: Turbulent gravitational convection from maintained and instantaneous sources. Proc. Roy. Soc. London, 234, 123, https://doi.org/10.1098/rspa.1956.0011.

    • Search Google Scholar
    • Export Citation
  • Pratt, L. J., and J. A. Whitehead, 2007: Rotating Hydraulics. Springer, 592 pp.

    • Crossref
    • Export Citation
  • Pritchard, H. D., and D. G. Vaughan, 2007: Widespread acceleration of tidewater glaciers on the Antarctic Peninsula. J. Geophys. Res., 112, F03S29, https://doi.org/10.1029/2006JF000597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rignot, E., S. Jacobs, J. Mouginot, and B. Scheuchl, 2013: Ice-shelf melting around Antarctica. Science, 341, 266270, https://doi.org/10.1126/science.1235798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaffer, J., T. Kanzow, W. von Appen, L. von Albedyll, J. E. Arndt, and D. H. Roberts, 2020: Bathymetry constrains ocean heat supply to Greenland’s largest glacier tongue. Nat. Geosci., 13, 227231, https://doi.org/10.1038/s41561-019-0529-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sciascia, R., F. Straneo, C. Cenedese, and P. Heimbach, 2013: Seasonal variability of submarine melt rate and circulation in an East Greenland fjord. J. Geophys. Res. Oceans, 118, 24922506, https://doi.org/10.1002/jgrc.20142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seroussi, H., M. Morlighem, E. Rignot, E. Larour, D. Aubry, H. Ben Dhia, and S. Kristensen, 2011: Ice flux divergence anomalies on 79 North Glacier, Greenland. Geophys. Res. Lett., 38, L09501, https://doi.org/10.1029/2011GL047338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slater, D. A., F. Straneo, S. B. Das, C. G. Richards, T. J. W. Wagner, and P. W. Nienow, 2018: Localized plumes drive front-wide ocean melting of a Greenlandic tidewater glacier. Geophys. Res. Lett., 45, 12 35012 358, https://doi.org/10.1029/2018GL080763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., R. H. Jackson, and F. Straneo, 2017: Katabatic wind-driven exchange in fjords. J. Geophys. Res. Oceans, 122, 82468262, https://doi.org/10.1002/2017JC013026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St-Laurent, P., 2018: Back of Envelope Ocean Model (BEOM). Accessed 1 April 2018, www.nordet.net/beom.html.

  • St-Laurent, P., J. M. Klinck, and M. S. Dinniman, 2013: On the role of coastal troughs in the circulation of warm circumpolar deep water on Antarctic shelves. J. Phys. Oceanogr., 43, 5164, https://doi.org/10.1175/JPO-D-11-0237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, M., 1974: Comment on rotating hydraulics. Geophys. Fluid Dyn., 6, 127130, https://doi.org/10.1080/03091927409365791.

  • Stewart, K., A. Hogg, S. Griffies, A. Heerdegen, M. Ward, P. Spence, and M. England, 2017: Vertical resolution of baroclinic modes in global ocean models. Ocean Modell., 113, 5065, https://doi.org/10.1016/j.ocemod.2017.03.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straneo, F., and P. Heimbach, 2013: North Atlantic warming and the retreat of Greenland’s outlet glaciers. Nature, 504, 3643, https://doi.org/10.1038/nature12854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straneo, F., and C. Cenedese, 2015: The dynamics of Greenland’s glacial fjords and their role in climate. Annu. Rev. Mar. Sci., 7, 89112, https://doi.org/10.1146/annurev-marine-010213-135133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutherland, D. A., and et al. , 2019: Direct observations of submarine melt and subsurface geometry at a tidewater glacier. Science, 365, 369374, https://doi.org/10.1126/science.aax3528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1979: Buoyancy Effects in Fluids. Cambridge University Press, 368 pp.

  • Visbeck, M., J. Marshall, T. Haine, and M. Spall, 1997: Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr., 27, 381402, https://doi.org/10.1175/1520-0485(1997)027<0381:SOETCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitehead, J. A., A. Leetmaa, and R. Knox, 1974: Rotating hydraulics of strait and sill flows. Geophys. Fluid Dyn., 6, 101125, https://doi.org/10.1080/03091927409365790.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, M., E. Rignot, I. Fenty, D. Menemenlis, R. Millan, M. Morlighem, J. Mouginot, and H. Seroussi, 2018: Ocean-induced melt triggers glacier retreat in northwest Greenland. Geophys. Res. Lett., 45, 83348342, https://doi.org/10.1029/2018GL078024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Y., E. Rignot, D. Menemenlis, and M. Koppes, 2012: Numerical experiments on subaqueous melting of Greenland tidewater glaciers in response to ocean warming and enhanced subglacial discharge. Ann. Glaciol., 53, 229234, https://doi.org/10.3189/2012AoG60A139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, K. X., A. L. Stewart, and J. C. McWilliams, 2019: Sill-influenced exchange flows in ice shelf cavities. J. Phys. Oceanogr., 49, 163191, https://doi.org/10.1175/JPO-D-18-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 223 223 18
Full Text Views 73 73 9
PDF Downloads 98 98 12

Geometric Constraints on Glacial Fjord–Shelf Exchange

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The oceanic connections between tidewater glaciers and continental shelf waters are modulated and controlled by geometrically complex fjords. These fjords exhibit both overturning circulations and horizontal recirculations, driven by a combination of water mass transformation at the head of the fjord, variability on the continental shelf, and atmospheric forcing. However, it remains unclear which geometric and forcing parameters are the most important in exerting control on the overturning and horizontal recirculation. To address this, idealized numerical simulations are conducted using an isopycnal model of a fjord connected to a continental shelf, which is representative of regions in Greenland and the West Antarctic Peninsula. A range of sensitivity experiments demonstrate that sill height, wind direction/strength, subglacial discharge strength, and depth of offshore warm water are of first-order importance to the overturning circulation, while fjord width is also of leading importance to the horizontal recirculation. Dynamical predictions are developed and tested for the overturning circulation of the entire shelf-to-glacier-face domain, subdivided into three regions: the continental shelf extending from the open ocean to the fjord mouth, the sill overflow at the fjord mouth, and the plume-driven water mass transformation at the fjord head. A vorticity budget is also developed to predict the strength of the horizontal recirculation, which provides a scaling in terms of the overturning and bottom friction. Based on these theories, we may predict glacial melt rates that take into account overturning and recirculation, which may be used to refine estimates of ocean-driven melting of the Greenland and Antarctic ice sheets.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-20-0091.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ken X. Zhao, kzhao@atmos.ucla.edu

Abstract

The oceanic connections between tidewater glaciers and continental shelf waters are modulated and controlled by geometrically complex fjords. These fjords exhibit both overturning circulations and horizontal recirculations, driven by a combination of water mass transformation at the head of the fjord, variability on the continental shelf, and atmospheric forcing. However, it remains unclear which geometric and forcing parameters are the most important in exerting control on the overturning and horizontal recirculation. To address this, idealized numerical simulations are conducted using an isopycnal model of a fjord connected to a continental shelf, which is representative of regions in Greenland and the West Antarctic Peninsula. A range of sensitivity experiments demonstrate that sill height, wind direction/strength, subglacial discharge strength, and depth of offshore warm water are of first-order importance to the overturning circulation, while fjord width is also of leading importance to the horizontal recirculation. Dynamical predictions are developed and tested for the overturning circulation of the entire shelf-to-glacier-face domain, subdivided into three regions: the continental shelf extending from the open ocean to the fjord mouth, the sill overflow at the fjord mouth, and the plume-driven water mass transformation at the fjord head. A vorticity budget is also developed to predict the strength of the horizontal recirculation, which provides a scaling in terms of the overturning and bottom friction. Based on these theories, we may predict glacial melt rates that take into account overturning and recirculation, which may be used to refine estimates of ocean-driven melting of the Greenland and Antarctic ice sheets.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-20-0091.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ken X. Zhao, kzhao@atmos.ucla.edu

Supplementary Materials

    • Supplemental Materials (ZIP 27.28 MB)
Save