Diapycnal Mixing in the Subthermocline of the Mariana Ridge from High-Resolution Seismic Images

Qunshu Tang Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), China

Search for other papers by Qunshu Tang in
Current site
Google Scholar
PubMed
Close
,
Zhiyou Jing State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), China

Search for other papers by Zhiyou Jing in
Current site
Google Scholar
PubMed
Close
,
Jianmin Lin Key Laboratory of Ocean Observation-Imaging Testbed of Zhejiang Province, Zhejiang University, Zhoushan, China

Search for other papers by Jianmin Lin in
Current site
Google Scholar
PubMed
Close
, and
Jie Sun Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), China

Search for other papers by Jie Sun in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Mariana Ridge is one of the prominent mixing hotspots of the open ocean. The high-resolution underway marine seismic reflection technique provides an improved understanding of the spatiotemporal continuous map of ocean turbulent mixing. Using this novel technique, this study quantifies the diapycnal diffusivity of the subthermocline (300–1200-m depth) turbulence around the Mariana Ridge. The autotracked wave fields on seismic images allow us to derive the dissipation rate ε and diapycnal diffusivity Kρ based on the Batchelor model, which relates the horizontal slope spectra with +1/3 slope to the inertial convective turbulence regime. Diffusivity is locally intensified around the seamounts exceeding 10−3 m2 s−1 and gradually decreases to 10−5–10−4 m2 s−1 in ~60-km range, a distance that may be associated with the internal tide beam emanating paths. The overall pattern suggests a large portion of the energy dissipates locally and a significant portion dissipates in the far field. Empirical diffusivity models Kρ(x) and Kρ(z), varying with the distance from seamounts and the height above seafloor, respectively, are constructed for potential use in ocean model parameterization. Geographic distributions of both the vertically averaged dissipation rate and diffusivity show tight relationships with the topography. Additionally, a strong agreement of the dissipation results between seismic observation and numerical simulation is found for the first time. Such an agreement confirms the suitability of the seismic method in turbulence quantification and suggests the energy cascade from large-scale tides to small-scale turbulence via possible mechanisms of local direct tidal dissipation, near-local wave–wave interactions, and far-field radiating and breaking.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-20-0120.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Z. Jing, jingzhiyou@scsio.ac.cn.

Abstract

The Mariana Ridge is one of the prominent mixing hotspots of the open ocean. The high-resolution underway marine seismic reflection technique provides an improved understanding of the spatiotemporal continuous map of ocean turbulent mixing. Using this novel technique, this study quantifies the diapycnal diffusivity of the subthermocline (300–1200-m depth) turbulence around the Mariana Ridge. The autotracked wave fields on seismic images allow us to derive the dissipation rate ε and diapycnal diffusivity Kρ based on the Batchelor model, which relates the horizontal slope spectra with +1/3 slope to the inertial convective turbulence regime. Diffusivity is locally intensified around the seamounts exceeding 10−3 m2 s−1 and gradually decreases to 10−5–10−4 m2 s−1 in ~60-km range, a distance that may be associated with the internal tide beam emanating paths. The overall pattern suggests a large portion of the energy dissipates locally and a significant portion dissipates in the far field. Empirical diffusivity models Kρ(x) and Kρ(z), varying with the distance from seamounts and the height above seafloor, respectively, are constructed for potential use in ocean model parameterization. Geographic distributions of both the vertically averaged dissipation rate and diffusivity show tight relationships with the topography. Additionally, a strong agreement of the dissipation results between seismic observation and numerical simulation is found for the first time. Such an agreement confirms the suitability of the seismic method in turbulence quantification and suggests the energy cascade from large-scale tides to small-scale turbulence via possible mechanisms of local direct tidal dissipation, near-local wave–wave interactions, and far-field radiating and breaking.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-20-0120.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Z. Jing, jingzhiyou@scsio.ac.cn.

Supplementary Materials

    • Supplemental Materials (PDF 6.67 MB)
Save
  • Alford, M. H., 2003: Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophys. Res. Lett., 30, 1424, https://doi.org/10.1029/2002GL016614.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., J. A. MacKinnon, H. L. Simmons, and J. D. Nash, 2016: Near-inertial internal gravity waves in the ocean. Annu. Rev. Mar. Sci., 8, 95123, https://doi.org/10.1146/annurev-marine-010814-015746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, A. E., 2007: A tutorial on complex seismic trace analysis. Geophysics, 72, W33W43, https://doi.org/10.1190/1.2785048.

  • Batchelor, G. K., 1959: Small-scale variation of convected quantities like temperature in turbulent fluid. Part I. General discussion and the case of small conductivity. J. Fluid Mech., 5, 113133, https://doi.org/10.1017/S002211205900009X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., and Coauthors, 2014: Three-dimensional double-ridge internal tide resonance in Luzon Strait. J. Phys. Oceanogr., 44, 850869, https://doi.org/10.1175/JPO-D-13-024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calvert, A. J., S. L. Klemperer, N. Takahashi, and B. C. Kerr, 2008: Three-dimensional crustal structure of the Mariana island arc from seismic tomography. J. Geophys. Res., 113, B01406, https://doi.org/10.1029/2007JB004939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaigneau, A., O. Pizarro, and W. Rojas, 2008: Global climatology of near-inertial current characteristics from Lagrangian observations. Geophys. Res. Lett., 35, L13603, https://doi.org/10.1029/2008GL034060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J. K., and J. J. W. Stockwell, 2013: CWP/SU: Seismic Un*x Release No. 43: An open source software package for seismic research and processing. Center for Wave Phenomena, Colorado School of Mines, https://github.com/JohnWStockwellJr/SeisUnix.

  • de Lavergne, C., S. Falahat, G. Madec, F. Roquet, J. Nycander, and C. Vic, 2019: Toward global maps of internal tide energy sinks. Ocean Modell., 137, 5275, https://doi.org/10.1016/j.ocemod.2019.03.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., and Coauthors, 2020: A parameterization of local and remote tidal mixing. J. Adv. Model. Earth Syst., 12, e2020MS002065, https://doi.org/10.1029/2020MS002065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, A., N. J. White, and C. P. Caulfield, 2017: Spatial variation of diapycnal diffusivity estimated from seismic imaging of internal wave field, Gulf of Mexico. J. Geophys. Res. Oceans, 122, 98279854, https://doi.org/10.1002/2017JC013352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, A., N. J. White, and C. P. Caulfield, 2020: Time-lapse acoustic imaging of mesoscale and fine-scale variability within the Faroe-Shetland Channel. J. Geophys. Res. Oceans, 125, e2019JC015861, https://doi.org/10.1029/2019JC015861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775778, https://doi.org/10.1038/35015531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2001: Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data. J. Geophys. Res., 106, 22 47522 502, https://doi.org/10.1029/2000JC000699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falahat, S., J. Nycander, F. Roquet, and M. Zarroug, 2014: Global calculation of tidal energy conversion into vertical normal Modes. J. Phys. Oceanogr., 44, 32253244, https://doi.org/10.1175/JPO-D-14-0002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falder, M., N. White, and C. Caulfield, 2016: Seismic imaging of rapid onset of stratified turbulence in the South Atlantic Ocean. J. Phys. Oceanogr., 46, 10231044, https://doi.org/10.1175/JPO-D-15-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fortin, W. F. J., W. S. Holbrook, and R. W. Schmitt, 2016: Mapping turbulent diffusivity associated with oceanic internal lee waves offshore Costa Rica. Ocean Sci., 12, 601612, https://doi.org/10.5194/os-12-601-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fortin, W. F. J., W. S. Holbrook, and R. W. Schmitt, 2017: Seismic estimates of turbulent diffusivity and evidence of nonlinear internal wave forcing by geometric resonance in the South China Sea. J. Geophys. Res. Oceans, 122, 80638078, https://doi.org/10.1002/2017JC012690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furue, R., and M. Endoh, 2005: Effects of the Pacific diapycnal mixing and wind stress on the global and Pacific meridional overturning circulation. J. Phys. Oceanogr., 35, 18761890, https://doi.org/10.1175/JPO2792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., and G. Holloway, 1984: Dissipation and diffusion by internal wave breaking. J. Mar. Res., 42, 1527, https://doi.org/10.1357/002224084788506158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1975: Space-time scales of internal waves - a progress report. J. Geophys. Res., 80, 291297, https://doi.org/10.1029/JC080i003p00291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., and E. Kunze, 2007: Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech., 39, 5787, https://doi.org/10.1146/annurev.fluid.39.050905.110227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorman, A. R., M. W. Smillie, J. K. Cooper, M. H. Bowman, R. Vennell, W. S. Holbrook, and R. Frew, 2018: Seismic characterization of oceanic water masses, water mass boundaries, and mesoscale eddies SE of New Zealand. J. Geophys. Res. Oceans, 123, 15191532, https://doi.org/10.1002/2017JC013459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., E. A. D’Asaro, J. J. Riley, and E. Kunze, 2018: Mixing efficiency in the ocean. Annu. Rev. Mar. Sci., 10, 443473, https://doi.org/10.1146/annurev-marine-121916-063643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Günther, R. H., S. L. Klemperer, and A. M. Goodliffe, 2006: Modeling sideswipe in 2D oceanic seismic surveys from sonar data: Application to the Mariana arc. Tectonophysics, 420, 333343, https://doi.org/10.1016/j.tecto.2006.01.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hibiya, T., and M. Nagasawa, 2004: Latitudinal dependence of diapycnal diffusivity in the thermocline estimated using a finescale parameterization. Geophys. Res. Lett., 31, L01301, https://doi.org/10.1029/2003GL017998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holbrook, W. S., and I. Fer, 2005: Ocean internal wave spectra inferred from seismic reflection transects. Geophys. Res. Lett., 32, L15604, https://doi.org/10.1029/2005GL023733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holbrook, W. S., P. Paramo, S. Pearse, and R. W. Schmitt, 2003: Thermohaline fine structure in an oceanographic front from seismic reflection profiling. Science, 301, 821824, https://doi.org/10.1126/science.1085116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holbrook, W. S., I. Fer, and R. W. Schmitt, 2009: Images of internal tides near the Norwegian continental slope. Geophys. Res. Lett., 36, L00D10, https://doi.org/10.1029/2009GL038909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holbrook, W. S., I. Fe, R. W. Schmitt, D. Lizarralde, J. M. Klymak, L. C. Helfrich, and R. Kubichek, 2013: Estimating oceanic turbulence dissipation from seismic images. J. Atmos. Oceanic Technol., 30, 17671788, https://doi.org/10.1175/JTECH-D-12-00140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, P. E., and M. A. Merrifield, 1999: Internal tide generation by seamounts, ridges, and islands. J. Geophys. Res., 104, 25 93725 951, https://doi.org/10.1029/1999JC900207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, Z., and L. Wu, 2010: Seasonal variation of turbulent diapycnal mixing in the northwestern Pacific stirred by wind stress. Geophys. Res. Lett., 37, L23604, https://doi.org/10.1029/2010GL045418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, Z., L. Wu, L. Li, C. Liu, X. Liang, Z. Chen, D. Hu, and Q. Liu, 2011: Turbulent diapycnal mixing in the subtropical northwestern Pacific: Spatial-seasonal variations and role of eddies. J. Geophys. Res., 116, C10028, https://doi.org/10.1029/2011JC007142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, Z., L. Wu, and X. Ma, 2016: Sensitivity of near-inertial internal waves to spatial interpolations of wind stress in ocean generation circulation models. Ocean Modell., 99, 1521, https://doi.org/10.1016/j.ocemod.2015.12.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnston, T. M. S., and M. A. Merrifield, 2003: Internal tide scattering at seamounts, ridges, and islands. J. Geophys. Res., 108, 3180, https://doi.org/10.1029/2002JC001528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, I. F., and S. Levy, 1987: Signal-to-noise ratio enhancement in multichannel seismic data via the Karhunen-Loeve transform. Geophys. Prospect., 35, 1232, https://doi.org/10.1111/j.1365-2478.1987.tb00800.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerry, C. G., B. S. Powell, and G. S. Carter, 2013: Effects of remote generation sites on model estimates of M2 internal tides in the Philippine Sea. J. Phys. Oceanogr., 43, 187204, https://doi.org/10.1175/JPO-D-12-081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemperer, S., and A. Goodliffe, 2014: Raw multi-channel seismic shot data from the Mariana volcanic arc acquired during the R/V Maurice Ewing expedition EW0203 (2002). Interdisciplinary Earth Data Alliance (IEDA), accessed 15 November 2018, https://doi.org/10.1594/IEDA/306903.

    • Crossref
    • Export Citation
  • Klymak, J. M., and J. N. Moum, 2007a: Oceanic isopycnal slope spectra. Part I: Internal waves. J. Phys. Oceanogr., 37, 12151231, https://doi.org/10.1175/JPO3073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and J. N. Moum, 2007b: Oceanic isopycnal slope spectra. Part II: Turbulence. J. Phys. Oceanogr., 37, 12321245, https://doi.org/10.1175/JPO3074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and Coauthors, 2006: An estimate of tidal energy lost to turbulence at the Hawaiian Ridge. J. Phys. Oceanogr., 36, 11481164, https://doi.org/10.1175/JPO2885.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., M. H. Alford, R. Pinkel, R.-C. Lien, Y. J. Yang, and T.-Y. Tang, 2011: The breaking and scattering of the internal tide on a continental slope. J. Phys. Oceanogr., 41, 926945, https://doi.org/10.1175/2010JPO4500.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krahmann, G., C. Papenberg, P. Brandt, and M. Vogt, 2009: Evaluation of seismic reflector slopes with a Yoyo-CTD. Geophys. Res. Lett., 36, L00D02, https://doi.org/10.1029/2009GL038964.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., 2017: Internal-wave-driven mixing: Global geography and budgets. J. Phys. Oceanogr., 47, 13251345, https://doi.org/10.1175/JPO-D-16-0141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., E. Firing, J. M. Hummon, T. K. Chereskin, and A. M. Thurnherr, 2006: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 36, 15531576, https://doi.org/10.1175/JPO2926.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., and M. C. Gregg, 2001: Observations of turbulence in a tidal beam and across a coastal ridge. J. Geophys. Res., 106, 45754591, https://doi.org/10.1029/2000JC000351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z. Y., Q. Lian, F. Zhang, L. Wang, M. Li, X. Bai, J. Wang, and F. Wang, 2017: Weak thermocline mixing in the North Pacific low-latitude western boundary current system. Geophys. Res. Lett., 44, 10 53010 539, https://doi.org/10.1002/2017GL075210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562, https://doi.org/10.1175/JPO3130.1.

  • Mashayek, A., H. Salehipour, D. Bouffard, C. P. Caulfield, R. Ferrari, M. Nikurashin, W. R. Peltier, and W. D. Smyth, 2017: Efficiency of turbulent mixing in the abyssal ocean circulation. Geophys. Res. Lett., 44, 62966306, https://doi.org/10.1002/2016GL072452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc., 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.

  • Mojica, J. F., V. Sallarès, and B. Biescas, 2018: High-resolution diapycnal mixing map of the Alboran Sea thermocline from seismic reflection images. Ocean Sci., 14, 403415, https://doi.org/10.5194/os-14-403-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, P., G. Holloway, F. Henyey, and N. Pomphrey, 1986: Nonlinear interactions among internal gravity waves. Rev. Geophys., 24, 493536, https://doi.org/10.1029/RG024i003p00493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musgrave, R. C., J. A. MacKinnon, R. Pinkel, A. F. Waterhouse, and J. Nash, 2016: Tidally driven processes leading to near-field turbulence in a channel at the crest of the Mendocino Escarpment. J. Phys. Oceanogr., 46, 11371155, https://doi.org/10.1175/JPO-D-15-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musgrave, R. C., J. A. MacKinnon, R. Pinkel, A. F. Waterhouse, J. Nash, and S. M. Kelly, 2017: The influence of subinertial internal tides on near-topographic turbulence at the Mendocino Ridge: Observations and modeling. J. Phys. Oceanogr., 47, 21392154, https://doi.org/10.1175/JPO-D-16-0278.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagasawa, M., T. Hibiya, K. Yokota, Y. Tanaka, and S. Takagi, 2007: Microstructure measurements in the mid-depth waters of the North Pacific. Geophys. Res. Lett., 34, L05608, https://doi.org/10.1029/2006GL028695.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. D., E. Kunze, C. M. Lee, and T. B. Sanford, 2006: Structure of the baroclinic tide generated at Kaena Ridge, Hawaii. J. Phys. Oceanogr., 36, 11231135, https://doi.org/10.1175/JPO2883.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niwa, Y., and T. Hibiya, 2001: Numerical study of the spatial distribution of the M2 internal tide in the Pacific Ocean. J. Geophys. Res., 106, 22 44122 449, https://doi.org/10.1029/2000JC000770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niwa, Y., and T. Hibiya, 2004: Three-dimensional numerical simulation of M2 internal tides in the East China Sea. J. Geophys. Res., 109, C04027, https://doi.org/10.1029/2003JC001923.

    • Search Google Scholar
    • Export Citation
  • Niwa, Y., and T. Hibiya, 2014: Generation of baroclinic tide energy in a global three-dimensional numerical model with different spatial grid resolutions. Ocean Modell., 80, 5973, https://doi.org/10.1016/j.ocemod.2014.05.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nycander, J., 2005: Generation of internal waves in the deep ocean by tides. J. Geophys. Res., 110, C10028, https://doi.org/10.1029/2004JC002487.

  • Osborn, T. R., 1980: Estimates of the local-rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, and R. W. Schmitt, 1995: Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr., 25, 306328, https://doi.org/10.1175/1520-0485(1995)025<0306:FPOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., D. L. Rudnick, I. Cerovecki, B. D. Cornuelle, S. Chen, M. C. Schönau, J. L. McClean, and G. Gopalakrishnan, 2015: The Pacific North Equatorial Current: New insights from the origins of the Kuroshio and Mindanao Currents (OKMC) Project. Oceanography, 28, 2433, https://doi.org/10.5670/oceanog.2015.78.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruddick, B., H. B. Song, C. Z. Dong, and L. Pinheiro, 2009: Water column seismic images as maps of temperature gradient. Oceanography, 22, 192205, https://doi.org/10.5670/oceanog.2009.19.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., and Coauthors, 2003: From tides to mixing along the Hawaiian ridge. Science, 301, 355357, https://doi.org/10.1126/science.1085837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallarès, V., B. Biescas, G. Buffett, R. Carbonell, J. J. Danobeitia, and J. L. Pelegri, 2009: Relative contribution of temperature and salinity to ocean acoustic reflectivity. Geophys. Res. Lett., 36, L00D06, https://doi.org/10.1029/2009GL040187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallares, V., J. F. Mojica, B. Biescas, D. Klaeschen, and E. Gràcia, 2016: Characterization of the sub-mesoscale energy cascade in the Alboran Sea thermocline from spectral analysis of high-resolution MCS data. Geophys. Res. Lett., 43, 64616468, https://doi.org/10.1002/2016GL069782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shang, X., Y. Qi, G. Chen, C. Liang, R. G. Lueck, B. Prairie, and H. Li, 2017: An expendable microstructure profiler for deep ocean measurements. J. Atmos. Oceanic Technol., 34, 153165, https://doi.org/10.1175/JTECH-D-16-0083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheen, K. L., N. J. White, and R. W. Hobbs, 2009: Estimating mixing rates from seismic images of oceanic structure. Geophys. Res. Lett., 36, L00D04, https://doi.org/10.1029/2009GL040106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sreenivasan, K. R., 1996: The passive scalar spectrum and the Obukhov–Corrsin constant. Phys. Fluids, 8, 189196, https://doi.org/10.1063/1.868826.

  • St. Laurent, L., and C. Garrett, 2002: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32, 28822899, https://doi.org/10.1175/1520-0485(2002)032<2882:TROITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Q., R. W. Hobbs, D. X. Wang, L. T. Sun, C. Zheng, J. B. Li, and C. Z. Dong, 2015: Marine seismic observation of internal solitary wave packets in the northeast South China Sea. J. Geophys. Res. Oceans, 120, 84878503, https://doi.org/10.1002/2015JC011362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Q., V. C. H. Tong, R. W. Hobbs, and M. Á. Morales Maqueda, 2019: Detecting changes at the leading edge of an interface between oceanic water layers. Nat. Commun., 10, 4674, https://doi.org/10.1038/s41467-019-12621-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Q., S. P. S. Gulick, J. Sun, L. Sun, and Z. Jing, 2020: Submesoscale features and turbulent mixing of an oblique anticyclonic eddy in the Gulf of Alaska investigated by marine seismic survey data. J. Geophys. Res. Oceans, 125, e2019JC015393, https://doi.org/10.1029/2019JC015393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tennekes, H., and J. L. Lumley, 1972: A First Course in Turbulence. The MIT Press, 300 pp.

  • Thorpe, S. A., 2005: The Turbulent Ocean. Cambridge University Press, 439 pp.

  • Tian, J. W., Q. X. Yang, and W. Zhao, 2009: Enhanced diapycnal mixing in the South China Sea. J. Phys. Oceanogr., 39, 31913203, https://doi.org/10.1175/2009JPO3899.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Haren, H., C. Berndt, and I. Klaucke, 2017: Ocean mixing in deep-sea trenches: New insights from the Challenger Deep, Mariana Trench. Deep-Sea Res. I, 129, 19, https://doi.org/10.1016/j.dsr.2017.09.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., Z. Xu, B. Yin, Y. Hou, and H. Chang, 2018: Long-range radiation and interference pattern of multisource M2 internal tides in the Philippine Sea. J. Geophys. Res. Oceans, 123, 50915112, https://doi.org/10.1029/2018JC013910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and T. Hibiya, 2002: Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Lett., 29, 1239, https://doi.org/10.1029/2001GL014422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, https://doi.org/10.1175/JPO-D-13-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wessel, P., and W. H. F. Smith, 1998: New, improved version of the generic mapping tools released. Eos, Trans. Amer. Geophys. Union, 79, 579, https://doi.org/10.1029/98EO00426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., L. D. Talley, and J. A. MacKinnon, 2012: Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophys. Res. Lett., 39, L18612, https://doi.org/10.1029/2012GL053196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., J. A. MacKinnon, and L. D. Talley, 2018: Large-scale impacts of the mesoscale environment on mixing from wind-driven internal waves. Nat. Geosci., 11, 842847, https://doi.org/10.1038/s41561-018-0213-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., W. Zhao, M. Li, and J. Tian, 2014: Spatial structure of turbulent mixing in the northwestern Pacific Ocean. J. Phys. Oceanogr., 44, 22352247, https://doi.org/10.1175/JPO-D-13-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, X., R. J. Greatbatch, C. Eden, and T. Hibiya, 2009: On the loss of wind-induced near-inertial energy to turbulent mixing in the upper ocean. J. Phys. Oceanogr., 39, 30403045, https://doi.org/10.1175/2009JPO4259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., Z. Jing, and Q. Tang, 2019: Study on Kuroshio mixing by using high-resolution water seismic reflection data (in Chinese). J. Trop. Oceanogr., 38, 2029.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 556 0 0
Full Text Views 992 190 13
PDF Downloads 527 141 10