• Austin, J. A., and S. J. Lentz, 2002: The inner shelf response to wind-driven upwelling and downwelling. J. Phys. Oceanogr., 32, 21712193, https://doi.org/10.1175/1520-0485(2002)032<2171:TISRTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becherer, J., J. N. Moum, J. A. Colosi, J. A. Lerczak, and J. M. McSweeney, 2020: Turbulence asymmetries in bottom boundary layer velocity pulses associated with onshore-propagating nonlinear internal waves. J. Phys. Oceanogr., 50, 23732391, https://doi.org/10.1175/JPO-D-19-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burchard, H., and et al. , 2008: Observational and numerical modeling methods for quantifying coastal ocean turbulence and mixing. Prog. Oceanogr., 76, 399442, https://doi.org/10.1016/j.pocean.2007.09.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., and J.-M. Beckers, 2011: Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects. 2nd ed. Academic Press, 875 pp.

    • Search Google Scholar
    • Export Citation
  • Dewey, R. K., and S. Stringer, 2020: Reynolds stresses and turbulent kinetic energy estimates from various ADCP beam configurations: Theory. Unpublished Tech. Paper, 35 pp., https://doi.org/10.13140/RG.2.1.1042.8002.

    • Crossref
    • Export Citation
  • Feddersen, F., and A. J. Williams, 2007: Direct estimation of the Reynolds stress vertical structure in the nearshore. J. Atmos. Oceanic Technol., 24, 102116, https://doi.org/10.1175/JTECH1953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fewings, M. R., S. J. Lentz, and J. Fredericks, 2008: Observations of cross-shelf flow driven by cross-shelf winds on the inner continental shelf. J. Phys. Oceanogr., 38, 23582378, https://doi.org/10.1175/2008JPO3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fewings, M. R., L. Washburn, and J. C. Ohlmann, 2015: Coastal water circulation patterns around the Northern Channel Islands and Point Conception, California. Prog. Oceanogr., 138, 283304, https://doi.org/10.1016/j.pocean.2015.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guerra, M., and J. Thomson, 2017: Turbulence measurements from five-beam acoustic Doppler current profilers. J. Atmos. Oceanic Technol., 34, 12671284, https://doi.org/10.1175/JTECH-D-16-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, N. G., 1971: Longshore current generation by obliquely incident internal waves. Geophys. Fluid Dyn., 2, 361376, https://doi.org/10.1080/03091927108236070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horwitz, R. M., and S. J. Lentz, 2014: Inner-shelf response to cross-shelf wind stress: The importance of the cross-shelf density gradient in an idealized numerical model and field observations. J. Phys. Oceanogr., 44, 86103, https://doi.org/10.1175/JPO-D-13-075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horwitz, R. M., and S. J. Lentz, 2016: The effect of wind direction on cross-shelf transport on an initially stratified inner shelf. J. Mar. Res., 74, 201227, https://doi.org/10.1357/002224016820870648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirincich, A. R., 2013: Long-term observations of turbulent Reynolds stresses over the inner continental shelf. J. Phys. Oceanogr., 43, 27522771, https://doi.org/10.1175/JPO-D-12-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirincich, A. R., and J. H. Rosman, 2011: A comparison of methods for estimating Reynolds stress from ADCP measurements in wavy environments. J. Atmos. Oceanic Technol., 28, 15391553, https://doi.org/10.1175/JTECH-D-11-00001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirincich, A. R., and G. G. Gawarkiewicz, 2016: Drivers of spring and summer variability in the coastal ocean offshore of Cape Cod, MA. J. Geophys. Res. Oceans, 121, 17891805, https://doi.org/10.1002/2015JC011252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirincich, A. R., S. J. Lentz, and G. P. Gerbi, 2010: Calculating Reynolds stresses from ADCP measurements in the presence of surface gravity waves using the cospectra-fit method. J. Atmos. Oceanic Technol., 27, 889907, https://doi.org/10.1175/2009JTECHO682.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, N., and et al. , 2021: The Inner-Shelf Dynamics Experiment. Bull. Amer. Meteor. Soc., https://doi.org/10.1175/BAMS-D-19-0281.1, in press.

    • Search Google Scholar
    • Export Citation
  • Lamb, K. G., 2014: Internal wave breaking and dissipation mechanisms on the continental slope/shelf. Annu. Rev. Fluid. Mech., 46, 231254, https://doi.org/10.1146/annurev-fluid-011212-140701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W., and S. Pond, 1982: Sensible and latent heat flux measurements over the ocean. J. Phys. Oceanogr., 12, 464482, https://doi.org/10.1175/1520-0485(1982)012<0464:SALHFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., 1995: Sensitivity of the inner-shelf circulation to the form of the eddy viscosity profile. J. Phys. Oceanogr., 25, 1928, https://doi.org/10.1175/1520-0485(1995)025<0019:SOTISC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., and M. R. Fewings, 2012: The wind- and wave-driven inner-shelf circulation. Annu. Rev. Mar. Sci., 4, 317343, https://doi.org/10.1146/annurev-marine-120709-142745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., R. T. Guza, S. Elgar, F. Feddersen, and T. H. C. Herbers, 1999: Momentum balances on the North Carolina inner shelf. J. Geophys. Res., 104, 18 20518 226, https://doi.org/10.1029/1999JC900101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., M. Fewings, P. Howd, J. Fredericks, and K. Hathaway, 2008: Observations and a model of undertow over the inner continental shelf. J. Phys. Oceanogr., 38, 23412357, https://doi.org/10.1175/2008JPO3986.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lerczak, J., and et al. , 2019: Untangling a web of interactions where surf meets coastal ocean. Eos, Trans. Amer. Geophys. Union, 100, https://doi.org/10.1029/2019EO122141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohrmann, A., B. Hackett, and L. P. Røed, 1990: High resolution measurements of turbulence, velocity and stress using a pulse-to-pulse coherent Sonar. J. Atmos. Oceanic Technol., 7, 1937, https://doi.org/10.1175/1520-0426(1990)007<0019:HRMOTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M., and R. Stewart, 1964: Radiation stresses in water waves; A physical discussion, with applications. Deep-Sea Res. Oceanogr. Abstr., 11, 529562, https://doi.org/10.1016/0011-7471(64)90001-4..

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, Y., and R. G. Lueck, 1999: Using a broadband ADCP in a tidal channel. Part II: Turbulence. J. Atmos. Oceanic Technol., 16, 15681579, https://doi.org/10.1175/1520-0426(1999)016<1568:UABAIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and M. C. Gregg, 2003: Mixing on the late-summer New England shelf—Solibores, shear, and stratification. J. Phys. Oceanogr., 33, 14761492, https://doi.org/10.1175/1520-0485(2003)033<1476:MOTLNE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and M. C. Gregg, 2005: Spring mixing: Turbulence and internal waves during restratification on the New England shelf. J. Phys. Oceanogr., 35, 24252443, https://doi.org/10.1175/JPO2821.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, R. M., B. M. Hickey, E. P. Dever, and P. MacCready, 2015: Seasonal cross-shelf flow structure, upwelling relaxation, and the alongshelf pressure gradient in the northern California Current System. J. Phys. Oceanogr., 45, 209227, https://doi.org/10.1175/JPO-D-14-0025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McSweeney, J. M., and et al. , 2020a: Alongshore variability of shoaling internal bores on the inner shelf. J. Phys. Oceanogr., 50, 29652981, https://doi.org/10.1175/JPO-D-20-0090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McSweeney, J. M., and et al. , 2020b: Observations of shoaling nonlinear internal bores across the central California inner shelf. J. Phys. Oceanogr., 50, 111132, https://doi.org/10.1175/JPO-D-19-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchum, G. T., and A. J. Clarke, 1986: The frictional nearshore response to forcing by synoptic scale winds. J. Phys. Oceanogr., 16, 934946, https://doi.org/10.1175/1520-0485(1986)016<0934:TFNRTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pringle, J. M., and K. Riser, 2003: Remotely forced nearshore upwelling in Southern California. J. Geophys. Res., 108, 3131, https://doi.org/10.1029/2002JC001447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rippeth, T. P., 2005: Mixing in seasonally stratified shelf seas: A shifting paradigm. Philos. Trans. Roy. Soc., 363A, 28372854, https://doi.org/10.1098/rsta.2005.1662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rippeth, T. P., J. H. Simpson, E. Williams, and M. E. Inall, 2003: Measurement of the rates of production and dissipation of turbulent kinetic energy in an energetic tidal flow: Red Wharf Bay revisited. J. Phys. Oceanogr., 33, 18891901, https://doi.org/10.1175/1520-0485(2003)033<1889:MOTROP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosman, J. H., J. L. Hench, J. R. Koseff, and S. G. Monismith, 2008: Extracting Reynolds stresses from acoustic Doppler current profiler measurements in wave-dominated environments. J. Atmos. Oceanic Technol., 25, 286306, https://doi.org/10.1175/2007JTECHO525.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scannell, B. D., T. P. Rippeth, J. H. Simpson, J. A. Polton, and J. E. Hopkins, 2017: Correcting surface wave bias in structure function estimates of turbulent kinetic energy dissipation rate. J. Atmos. Oceanic Technol., 34, 22572273, https://doi.org/10.1175/JTECH-D-17-0059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scotti, A., B. Butman, R. C. Beardsley, P. S. Alexander, and S. Anderson, 2005: A modified beam-to-Earth transformation to measure short-wavelength internal waves with an acoustic Doppler current profiler. J. Atmos. Oceanic Technol., 22, 583591, https://doi.org/10.1175/JTECH1731.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shroyer, E. L., J. N. Moum, and J. D. Nash, 2010: Vertical heat flux and lateral mass transport in nonlinear internal waves. Geophys. Res. Lett., 37, L08601, https://doi.org/10.1029/2010GL042715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. H., and D. T. Sandwell, 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 19561962, https://doi.org/10.1126/science.277.5334.1956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stacey, M. T., S. G. Monismith, and J. R. Burau, 1999: Measurements of Reynolds stress profiles in unstratified tidal flow. J. Geophys. Res., 104, 10 93310 949, https://doi.org/10.1029/1998JC900095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1999: The generation of alongslope currents by breaking internal waves. J. Phys. Oceanogr., 29, 2938, https://doi.org/10.1175/1520-0485(1999)029<0029:TGOACB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., W. G. Large, and J. G. Olson, 1990: The mean annual cycle in global ocean wind stress. J. Phys. Oceanogr., 20, 17421760, https://doi.org/10.1175/1520-0485(1990)020<1742:TMACIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trowbridge, J., M. Scully, and C. R. Sherwood, 2018: The cospectrum of stress-carrying turbulence in the presence of surface gravity waves. J. Phys. Oceanogr., 48, 2944, https://doi.org/10.1175/JPO-D-17-0016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Haren, H., N. Oakey, and C. Garrett, 1994: Measurements of internal wave band eddy fluxes above a sloping bottom. J. Mar. Res., 52, 909946, https://doi.org/10.1357/0022240943076876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walter, R. K., C. Brock Woodson, R. S. Arthur, O. B. Fringer, and S. G. Monismith, 2012: Nearshore internal bores and turbulent mixing in southern Monterey Bay. J. Geophys. Res., 117, C07017, https://doi.org/10.1029/2012JC008115.

    • Search Google Scholar
    • Export Citation
  • Whipple, A. C., R. A. Luettich, and H. E. Seim, 2006: Measurements of Reynolds stress in a wind-driven lagoonal estuary. Ocean Dyn., 56, 169185, https://doi.org/10.1007/s10236-005-0038-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E., and J. H. Simpson, 2004: Uncertainties in estimates of Reynolds stress and TKE production rate using the ADCP variance method. J. Atmos. Oceanic Technol., 21, 347357, https://doi.org/10.1175/1520-0426(2004)021<0347:UIEORS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zikanov, O., and D. N. Slinn, 2001: Along-slope current generation by obliquely incident internal waves. J. Fluid Mech., 445, 235261, https://doi.org/10.1017/S0022112001005560.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 183 183 21
Full Text Views 55 55 5
PDF Downloads 64 64 5

Subtidal to Supertidal Variability of Reynolds Stresses in a Midlatitude Stratified Inner Shelf

View More View Less
  • 1 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

We describe the spatiotemporal variability and vertical structure of turbulent Reynolds stresses (RSs) in a stratified inner shelf with an energetic internal wave climate. The RSs are estimated from direct measurements of velocity variance derived from bottom-mounted acoustic Doppler current profilers. We link the RSs to different physical processes, namely, internal bores, midwater shear instabilities within vertical shear events related to wind-driven subtidal along-shelf currents, and nonturbulent stresses related to incoming nonlinear internal wave (NLIW) trains. The typical RS magnitudes are O(0.01) Pa for background conditions, with diurnal pulses of O(0.1–1) Pa, and O(1) Pa for the NLIW stresses. A NLIW train is observed to produce a depth-averaged vertical stress divergence sufficient to accelerate water 20 cm s−1 in 1 h, suggesting NLIWs may also be important contributors to the depth-averaged momentum budget. The subtidal stresses show significant periodic variability and are O(0.1) Pa. Conditionally averaged velocity and RS profiles for northward/southward flow provide evidence for downgradient turbulent momentum fluxes, but also indicate departures from this expected regime. Estimates of the terms in the depth-averaged momentum equation suggest that the vertical divergence of the RSs are important terms in both the cross-shelf and along-shelf directions, with geostrophy also present at leading-order in the cross-shelf momentum balance. Among other conclusions, the results highlight that internal bores and shoaling NLIWs may also be important dynamical players in other inner shelves with energetic internal waves.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: André Palóczy, apaloczy@ucsd.edu

Abstract

We describe the spatiotemporal variability and vertical structure of turbulent Reynolds stresses (RSs) in a stratified inner shelf with an energetic internal wave climate. The RSs are estimated from direct measurements of velocity variance derived from bottom-mounted acoustic Doppler current profilers. We link the RSs to different physical processes, namely, internal bores, midwater shear instabilities within vertical shear events related to wind-driven subtidal along-shelf currents, and nonturbulent stresses related to incoming nonlinear internal wave (NLIW) trains. The typical RS magnitudes are O(0.01) Pa for background conditions, with diurnal pulses of O(0.1–1) Pa, and O(1) Pa for the NLIW stresses. A NLIW train is observed to produce a depth-averaged vertical stress divergence sufficient to accelerate water 20 cm s−1 in 1 h, suggesting NLIWs may also be important contributors to the depth-averaged momentum budget. The subtidal stresses show significant periodic variability and are O(0.1) Pa. Conditionally averaged velocity and RS profiles for northward/southward flow provide evidence for downgradient turbulent momentum fluxes, but also indicate departures from this expected regime. Estimates of the terms in the depth-averaged momentum equation suggest that the vertical divergence of the RSs are important terms in both the cross-shelf and along-shelf directions, with geostrophy also present at leading-order in the cross-shelf momentum balance. Among other conclusions, the results highlight that internal bores and shoaling NLIWs may also be important dynamical players in other inner shelves with energetic internal waves.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: André Palóczy, apaloczy@ucsd.edu
Save