• Andres, M., R. Musgrave, D. Rudnick, K. Zeiden, T. Peacock, and J.-H. Park, 2020: On the predictability of sea surface height around Palau. J. Phys. Oceanogr., 50, 32673294, https://doi.org/10.1175/JPO-D-19-0310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arístegui, J., P. Sangra, S. Hernandez-Leon, M. Canton, A. Hernandez-Guerra, and J. Kerling, 1994: Island induced eddies in the Canary Islands. Deep-Sea Res., 41, 15091525, https://doi.org/10.1016/0967-0637(94)90058-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barkley, R., 1972: Johnston Atoll’s wake. J. Mar. Res., 30, 201216.

  • Bearman, P., 1969: On vortex shedding from a circular cylinder in the critical Reynolds number regime. J. Fluid Mech., 37, 577585, https://doi.org/10.1017/S0022112069000735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bearman, P., 1984: Vortex shedding from oscillating bluff bodies. Annu. Rev. Fluid Mech., 16, 195222, https://doi.org/10.1146/annurev.fl.16.010184.001211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, M., D. Dietrich, and C. Lin, 1996: Observations and modeling of mesoscale ocean circulation near a small island. Coastal Estuarine Stud., 51, 1835, https://doi.org/10.1029/CE051p0018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caldeira, R., A. Stenger, X. Couvelard, I. Araujo, P. Testor, and A. Lorenzo, 2014: Evolution of an oceanic anticyclone in the lee of Madeira Island: In situ and remote sensing survey. J. Geophys. Res. Oceans, 119, 11951216, https://doi.org/10.1002/2013JC009493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callendar, W., J. Klymak, and M. Foreman, 2011: Tidal generation of large sub-mesoscale eddy dipoles. Ocean Sci., 7, 487502, https://doi.org/10.5194/os-7-487-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, M., T. Tang, C. Ho, and S. Chao, 2013: Kuroshio-induced wake in the lee of Green Island off Taiwan. J. Geophys. Res. Oceans, 118, 15081519, https://doi.org/10.1002/jgrc.20151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, M., S. Jan, C. Liu, and Y. Cheng, 2019: Observations of island wakes at high Rossby numbers: Evolution of submesoscale vortices and free shear layers. J. Phys. Oceanogr., 49, 29973016, https://doi.org/10.1175/JPO-D-19-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D., R. DeSzoeke, and M. Schlax, 1998: Geographic variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, Y., M. H. Chang, D. Ko, S. Jan, M. Andres, A. Kirincich, Y. Yang, and J. Tai, 2020: Submesoscale eddy and frontal instabilities in the Kuroshio interacting with a Cape South of Taiwan. J. Geophys. Res. Oceans, 125, e2020JC016123, https://doi.org/10.1029/2020JC016123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Addezio, J., G. Jacobs, M. Yaremchuk, and I. Souopgui, 2020: Submesoscale eddy vertical covariances and dynamical constraints from high-resolution numerical simulations. J. Phys. Oceanogr., 50, 10871115, https://doi.org/10.1175/JPO-D-19-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, P., P. Besley, and D. Boyer, 1990: An experimental study of flow past a triangular cape in a linearly stratified fluid. Dyn. Atmos. Oceans, 14, 497528, https://doi.org/10.1016/0377-0265(89)90076-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 1993: Useful formulas for computing divergence, vorticity and their errors from three or more stations. Mon. Wea. Rev., 121, 713725, https://doi.org/10.1175/1520-0493(1993)121<0713:UFFCDV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delandmeter, P., J. Lambrechts, G. Marmorino, V. Legat, E. Wolanski, J.-F. Remacle, W. Chen, and E. Deleersnijder, 2017: Submesoscale tidal eddies in the wake of coral islands and reefs: Satellite data and numerical modelling. Ocean Dyn., 67, 897913, https://doi.org/10.1007/s10236-017-1066-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, C., J. McWilliams, and A. Shchepetkin, 2007: Island wakes in deep water. J. Phys. Oceanogr., 37, 962981, https://doi.org/10.1175/JPO3047.1.

  • Farmer, D., R. Pawlowicz, and R. Jiang, 2002: Tilting separation flows: A mechanism for intense vertical mixing in the coastal ocean. Dyn. Atmos. Oceans, 36, 4358, https://doi.org/10.1016/S0377-0265(02)00024-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, A., R. Weller, D. Rudnick, C. Eriksen, C. Lee, K. Brink, C. Fox, and R. Leben, 2002: Mesoscale eddies, coastal upwelling, and the upper-ocean heat budget in the Arabian Sea. Deep-Sea Res. II, 49, 22312264, https://doi.org/10.1016/S0967-0645(02)00036-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herández-León, S., 1991: Accumulation of mesozooplankton in a wake area as a causative mechanism of the “island-mass effect.” Mar. Biol., 109, 141147, https://doi.org/10.1007/BF01320241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heron, S., E. Metzger, and W. Skirving, 2006: Seasonal variations of the ocean surface circulation in the vicinity of Palau. J. Oceanogr., 62, 413426, https://doi.org/10.1007/s10872-006-0065-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heywood, K., E. Barton, and J. Simpson, 1990: The effects of flow disturbance by an oceanic island. J. Mar. Res., 48, 5573, https://doi.org/10.1357/002224090784984623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsin, Y., and B. Qiu, 2012: Seasonal fluctuations of the surface North Equatorial Countercurrent (NECC) across the Pacific basin. J. Geophys. Res., 117, C06001, https://doi.org/10.1029/2011JC007794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnston, T., and et al. , 2019: Energy and momentum lost to wake eddies and lee waves generated by the North Equatorial Current and tidal flows at Peleliu, Palau. Oceanography, 32, 110125, https://doi.org/10.5670/oceanog.2019.417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kundu, P., and I. Cohen, 1990: Fluid Mechanics. 4th ed. Elsevier, 904 pp.

  • MacKinnon, J., M. Alford, G. Voet, K. Zeiden, T. Johnston, and M. Siegelman, 2019: Eddy wake generation from broadband currents near Palau. J. Geophys. Res. Oceans, 124, 48914903, https://doi.org/10.1029/2019JC014945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrifield, S., and et al. , 2019: Island wakes observed from high-frequency current mapping radar. Oceanography, 32, 92101, https://doi.org/10.5670/oceanog.2019.415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molemaker, M., J. McWilliams, and W. Dewar, 2015: Submesoscale instability and generation of mesoscale anticyclones near a separation of the California Undercurrent. J. Phys. Oceanogr., 45, 613629, https://doi.org/10.1175/JPO-D-13-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okubo, A., 1970: Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep-Sea Res., 17, 445454, https://doi.org/10.1016/0011-7471(70)90059-8.

    • Search Google Scholar
    • Export Citation
  • Pattiaratchi, C., A. James, and M. Collins, 1987: Island wakes and headland eddies: A comparison between remotely sensed data and laboratory experiments. J. Geophys. Res., 92, 783794, https://doi.org/10.1029/JC092iC01p00783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawlak, G., P. MacCready, K. Edwards, and R. McCabe, 2003: Observations on the evolution of tidal vorticity at a stratified deep water headland. Geophys. Res. Lett., 30, 2234, https://doi.org/10.1029/2003GL018092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinkel, R., 1984: Doppler sonar observations of internal waves: The wavenumber-frequency spectrum. J. Phys. Oceanogr., 14, 12491270, https://doi.org/10.1175/1520-0485(1984)014<1249:DSOOIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and R. Lukas, 1996: Seasonal and interannual variability of the North equatorial current, the Mindanao Current, and the Kuroshio along the Pacific western boundary. J. Geophys. Res., 101, 12 31512 330, https://doi.org/10.1029/95JC03204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., D. Rudnick, S. Chen, and Y. Kashino, 2013: Quasi-stationary North Equatorial undercurrent jets across the tropical North Pacific Ocean. Geophys. Res. Lett., 40, 21832187, https://doi.org/10.1002/grl.50394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rainville, L., and R. Pinkel, 2006: Propagation of low-mode internal waves through the Ocean. J. Phys. Oceanogr., 36, 12201236, https://doi.org/10.1175/JPO2889.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roshko, A., 1954: On the development of turbulent wakes from vortex streets. National Advisory Committee for Aeronautics Rep. 1191, 27 pp., https://authors.library.caltech.edu/428/1/ROSnacarpt1191.pdf.

  • Rudnick, D., and R. Davis, 1988: Frontogenesis in mixed layers. J. Phys. Oceanogr., 18, 434457, https://doi.org/10.1175/1520-0485(1988)018<0434:FIML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D., and R. Weller, 1993: Observations of superiniertial and near-inertial wind driven flow. J. Phys. Oceanogr., 23, 23512359, https://doi.org/10.1175/1520-0485(1993)023<2351:OOSANI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D., K. Zeiden, C. Ou, T. Johnston, J. MacKinnon, M. Alford, and G. Voet, 2019: Understanding vorticity caused by flow passing an island. Oceanography, 32, 6673, https://doi.org/10.5670/oceanog.2019.412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schönau, M., and D. Rudnick, 2015: Glider observations of the North equatorial current in the western tropical Pacific. J. Geophys. Res. Oceans, 120, 35863605, https://doi.org/10.1002/2014JC010595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Signell, R., and W. Geyer, 1991: Transient eddy formation around headlands. J. Geophys. Res., 96, 25612575, https://doi.org/10.1029/90JC02029.

  • Simmons, H., B. Powell, S. Merrifield, S. Zedler, and P. Colin, 2019: Dynamical downscaling of equatorial flow response to Palau. Oceanography, 32, 8491, https://doi.org/10.5670/oceanog.2019.414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teague, W., G. Jacobs, H. Perkins, and J. Book, 2002: Low-frequency current observations in the Korea/Tsushima Strait. J. Phys. Oceanogr., 32, 16211641, https://doi.org/10.1175/1520-0485(2002)032<1621:LFCOIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teague, W., P. Hwang, G. Jacobs, J. Book, and H. Perkins, 2005: Transport variability across the Korea/Tsushima Strait and the Tsushima Island wake. Deep-Sea Res. II, 52, 17841801, https://doi.org/10.1016/j.dsr2.2003.07.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voet, G., M. Alford, and J. MacKinnon, 2020: Topographic form drag on tides and low-frequency flow: Observations of nonlinear lee waves over a tall submarine ridge near Palau. J. Phys. Oceanogr., 50, 14891507, https://doi.org/10.1175/JPO-D-19-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Karman, T., 1912: On the mechanism of resistance produced by moving body in liquid (in German). Nachr. Gelleschaft Wiss., 9, 509517.

    • Search Google Scholar
    • Export Citation
  • Weiss, J., 1991: The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D, 48, 273294, https://doi.org/10.1016/0167-2789(91)90088-Q.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, W., 1973: An oceanic wake in the equatorial undercurrent downstream from the Galapagos archipelago. J. Phys. Oceanogr., 3, 156161, https://doi.org/10.1175/1520-0485(1973)003<0156:AOWITE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijesekera, H., J. Wesson, D. Wang, W. Teague, and Z. Hallock, 2020: Observations of flow separation and mixing around the northern Palau Island/Ridge. J. Phys. Oceanogr., 50, 25292559, https://doi.org/10.1175/JPO-D-19-0291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolanski, E., P. Colin, J. Naithani, E. Deleersnijder, and Y. Golbuu, 2004: Large amplitude, leaky, island-generated, internal waves around Palau, Micronesia. Estuarine Coastal Shelf Sci., 60, 705716, https://doi.org/10.1016/j.ecss.2004.03.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeiden, K., D. Rudnick, and J. MacKinnon, 2019: Glider observations of a mesoscale oceanic island wake. J. Phys. Oceanogr., 49, 22172235, https://doi.org/10.1175/JPO-D-18-0233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, J., Y. Li, and F. Wang, 2013: Dynamical responses of the west Pacific North Equatorial Countercurrent (NECC) system to El Niño events. J. Geophys. Res. Oceans, 118, 28282844, https://doi.org/10.1002/jgrc.20196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Q., H. Lin, J. Meng, X. Hu, Y. Song, Y. Zhang, and C. Li, 2008: Sub-mesoscale ocean vortex trains in the Luzon Strait. J. Geophys. Res., 113, C04032, https://doi.org/10.1029/2007JC004362.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 156 156 74
Full Text Views 48 48 24
PDF Downloads 61 61 31

Broadband Submesoscale Vorticity Generated by Flow around an Island

View More View Less
  • 1 Scripps Institution of Oceanography, La Jolla, California
  • | 2 Naval Research Laboratory, Stennis Space Center, Mississippi
© Get Permissions
Restricted access

Abstract

An array of moorings deployed off the coast of Palau is used to characterize submesoscale vorticity generated by broadband upper-ocean flows around the island. Palau is a steep-sided archipelago lying in the path of strong zonal geostrophic currents, but tides and inertial oscillations are energetic as well. Vorticity is correspondingly broadband, with both mean and variance O(f) in a surface and subsurface layer (where f is the local Coriolis frequency). However, while subinertial vorticity is linearly related to the incident subinertial current, the relationship between superinertial velocity and superinertial vorticity is weak. Instead, there is a strong nonlinear relationship between subinertial velocity and superinertial vorticity. A key observation of this study is that during periods of strong westward flow, vorticity in the tidal bands increases by an order of magnitude. Empirical orthogonal functions (EOFs) of velocity show this nonstationary, superinertial vorticity variance is due to eddy motion at the scale of the array. Comparison of kinetic energy and vorticity time series suggest that lateral shear against the island varies with the subinertial flow, while tidal currents lead to flow reversals inshore of the recirculating wake and possibly eddy shedding. This is a departure from the idealized analog typically drawn on in island wake studies: a cylinder in a steady flow. In that case, eddy formation occurs at a frequency dependent on the scale of the obstacle and strength of the flow alone. The observed tidal formation frequency likely modulates the strength of submesoscale wake eddies and thus their dynamic relationship to the mesoscale wake downstream of Palau.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kristin L. Zeiden, kfitzmorris@ucsd.edu

This article is included in the Oceanic flow-topography interactions special collection.

Abstract

An array of moorings deployed off the coast of Palau is used to characterize submesoscale vorticity generated by broadband upper-ocean flows around the island. Palau is a steep-sided archipelago lying in the path of strong zonal geostrophic currents, but tides and inertial oscillations are energetic as well. Vorticity is correspondingly broadband, with both mean and variance O(f) in a surface and subsurface layer (where f is the local Coriolis frequency). However, while subinertial vorticity is linearly related to the incident subinertial current, the relationship between superinertial velocity and superinertial vorticity is weak. Instead, there is a strong nonlinear relationship between subinertial velocity and superinertial vorticity. A key observation of this study is that during periods of strong westward flow, vorticity in the tidal bands increases by an order of magnitude. Empirical orthogonal functions (EOFs) of velocity show this nonstationary, superinertial vorticity variance is due to eddy motion at the scale of the array. Comparison of kinetic energy and vorticity time series suggest that lateral shear against the island varies with the subinertial flow, while tidal currents lead to flow reversals inshore of the recirculating wake and possibly eddy shedding. This is a departure from the idealized analog typically drawn on in island wake studies: a cylinder in a steady flow. In that case, eddy formation occurs at a frequency dependent on the scale of the obstacle and strength of the flow alone. The observed tidal formation frequency likely modulates the strength of submesoscale wake eddies and thus their dynamic relationship to the mesoscale wake downstream of Palau.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kristin L. Zeiden, kfitzmorris@ucsd.edu

This article is included in the Oceanic flow-topography interactions special collection.

Save