• Arbic, B. K., and et al. , 2009: Estimates of bottom flows and bottom boundary layer dissipation of the oceanic general circulation from global high-resolution models. J. Geophys. Res., 114, C02024, https://doi.org/10.1029/2008JC005072.

    • Search Google Scholar
    • Export Citation
  • Benthuysen, J., and L. N. Thomas, 2012: Friction and diapycnal mixing at a slope: Boundary control of potential vorticity. J. Phys. Oceanogr., 42, 15091523, https://doi.org/10.1175/JPO-D-11-0130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bewley, T. R., 2008: Numerical Renaissance: Simulation, Optimization, and Control. Renaissance Press, 767 pp.

  • Brink, K. H., and S. J. Lentz, 2010: Buoyancy arrest and bottom Ekman transport. Part I: Steady flow. J. Phys. Oceanogr., 40, 621635, https://doi.org/10.1175/2009JPO4266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., 2018: Restratification of abyssal mixing layers by submesoscale baroclinic eddies. J. Phys. Oceanogr., 48, 19952010, https://doi.org/10.1175/JPO-D-18-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deusebio, E., G. Brethouwer, P. Schlatter, and E. Lindborg, 2014: A numerical study of the unstratified and stratified Ekman layer. J. Fluid Mech., 755, 672704, https://doi.org/10.1017/jfm.2014.318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flores, O., and J. Riley, 2011: Analysis of turbulence collapse in the stably stratified surface layer using direct numerical simulation. Bound.-Layer Meteor., 139, 241259, https://doi.org/10.1007/s10546-011-9588-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garabato, A. C. N., and et al. , 2019: Rapid mixing and exchange of deep-ocean waters in an abyssal boundary current. Proc. Natl. Acad. Sci. USA, 116, 13 23313 238, https://doi.org/10.1073/pnas.1904087116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2016: Topographic generation of submesoscale centrifugal instability and energy dissipation. Nat. Commun., 7, 12811, https://doi.org/10.1038/ncomms12811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haine, T. W., and J. Marshall, 1998: Gravitational, symmetric, and baroclinic instability of the ocean mixed layer. J. Phys. Oceanogr., 28, 634658, https://doi.org/10.1175/1520-0485(1998)028<0634:GSABIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, J., 2004: Turbulent flows over rough walls. Annu. Rev. Fluid Mech., 36, 173196, https://doi.org/10.1146/annurev.fluid.36.050802.122103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacCready, P., and P. B. Rhines, 1991: Buoyant inhibition of Ekman transport on a slope and its effect on stratified spin-up. J. Fluid Mech., 223, 631661, https://doi.org/10.1017/S0022112091001581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. C., and A. G. Nurser, 1992: Fluid dynamics of oceanic thermocline ventilation. J. Phys. Oceanogr., 22, 583595, https://doi.org/10.1175/1520-0485(1992)022<0583:FDOOTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2011: Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett., 38, L08610, https://doi.org/10.1029/2011GL046576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2001: Turbulent Flows. IOP Publishing, 807 pp.

  • Ruan, X., and J. Callies, 2020: Mixing-driven mean flows and submesoscale eddies over mid-ocean ridge flanks and fracture zone canyons. J. Phys. Oceanogr., 50, 175195, https://doi.org/10.1175/JPO-D-19-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruan, X., A. F. Thompson, M. M. Flexas, and J. Sprintall, 2017: Contribution of topographically generated submesoscale turbulence to Southern Ocean overturning. Nat. Geosci., 10, 840845, https://doi.org/10.1038/ngeo3053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruan, X., A. F. Thompson, and J. R. Taylor, 2019: The evolution and arrest of a turbulent stratified oceanic bottom boundary layer over a slope: Downslope regime. J. Phys. Oceanogr., 49, 469487, https://doi.org/10.1175/JPO-D-18-0079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sagaut, P., 2006: Large Eddy Simulation for Incompressible Flows: An Introduction. Springer, 558 pp.

  • Scott, R. B., and Y. Xu, 2009: An update on the wind power input to the surface geostrophic flow of the world ocean. Deep-Sea Res. I, 56, 295304, https://doi.org/10.1016/j.dsr.2008.09.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen, A., R. B. Scott, and B. K. Arbic, 2008: Global energy dissipation rate of deep-ocean low-frequency flows by quadratic bottom boundary layer drag: Computations from current-meter data. Geophys. Res. Lett., 35, L09606, https://doi.org/10.1029/2008GL033407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., 2008: Numerical simulations of the stratified oceanic bottom boundary layer. Ph.D. thesis, University of California, San Diego, 231 pp., https://escholarship.org/uc/item/5s30n2ts.

  • Taylor, J. R., and S. Sarkar, 2008: Stratification effects in a bottom Ekman layer. J. Phys. Oceanogr., 38, 25352555, https://doi.org/10.1175/2008JPO3942.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., and R. Ferrari, 2010: Buoyancy and wind-driven convection at mixed layer density fronts. J. Phys. Oceanogr., 40, 12221242, https://doi.org/10.1175/2010JPO4365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., 2005: Destruction of potential vorticity by winds. J. Phys. Oceanogr., 35, 24572466, https://doi.org/10.1175/JPO2830.1.

  • Thomas, L. N., J. R. Taylor, R. Ferrari, and T. M. Joyce, 2013: Symmetric instability in the Gulf Stream. Deep-Sea Res. II, 91, 96110, https://doi.org/10.1016/j.dsr2.2013.02.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trowbridge, J., and S. Lentz, 1991: Asymmetric behavior of an oceanic boundary layer above a sloping bottom. J. Phys. Oceanogr., 21, 11711185, https://doi.org/10.1175/1520-0485(1991)021<1171:ABOAOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trowbridge, J., and S. Lentz, 1998: Dynamics of the bottom boundary layer on the Northern California shelf. J. Phys. Oceanogr., 28, 20752093, https://doi.org/10.1175/1520-0485(1998)028<2075:DOTBBL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Umlauf, L., W. D. Smyth, and J. N. Moum, 2015: Energetics of bottom Ekman layers during buoyancy arrest. J. Phys. Oceanogr., 45, 30993117, https://doi.org/10.1175/JPO-D-15-0041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weatherly, G. L., and P. J. Martin, 1978: On the structure and dynamics of the oceanic bottom boundary layer. J. Phys. Oceanogr., 8, 557570, https://doi.org/10.1175/1520-0485(1978)008<0557:OTSADO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., and L. N. Thomas, 2020: Centrifugal and symmetric instability during Ekman adjustment of the bottom boundary layer. J. Phys. Oceanogr., 50, 17931812, https://doi.org/10.1175/JPO-D-20-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., J. Callies, and L. N. Thomas, 2018: Submesoscale baroclinic instability in the bottom boundary layer. J. Phys. Oceanogr., 48, 25712592, https://doi.org/10.1175/JPO-D-17-0264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, C. J., R. B. Scott, D. Furnival, P. Ailliot, and F. Vermet, 2013: Global observations of ocean-bottom subinertial current dissipation. J. Phys. Oceanogr., 43, 402417, https://doi.org/10.1175/JPO-D-12-082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1998: The work done by the wind on the oceanic general circulation. J. Phys. Oceanogr., 28, 23322340, https://doi.org/10.1175/1520-0485(1998)028<2332:TWDBTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, https://doi.org/10.1146/annurev.fluid.36.050802.122121.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 319 319 17
Full Text Views 112 112 5
PDF Downloads 132 132 7

The Evolution and Arrest of a Turbulent Stratified Oceanic Bottom Boundary Layer over a Slope: Upslope Regime and PV Dynamics

View More View Less
  • 1 Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
  • | 2 Environmental Science and Engineering, California Institute of Technology, Pasadena, California
  • | 3 Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The influence of a sloping bottom and stratification on the evolution of an oceanic bottom boundary layer (BBL) in the presence of a mean flow is explored. As a complement to an earlier study by Ruan et al. (https://doi.org/10.1175/JPO-D-18-0079.1) examining Ekman arrest in a downslope regime, this paper describes turbulence and BBL dynamics during Ekman arrest in the upslope regime. In the upslope regime, an enhanced stratification develops in response to the upslope Ekman transport and suppresses turbulence. Using a suite of large-eddy simulations, we show that the BBL evolution can be described in a self-similar framework based on a nondimensional number X/Xa. This nondimensional number is defined as the ratio between the lateral displacement of density surfaces across the slope X and a displacement Xa required for Ekman arrest; the latter can be predicted from external parameters. Additionally, the evolution of the depth-integrated potential vorticity is considered in both upslope and downslope regimes. The PV destruction rate in the downslope regime is found to be twice the production rate in the upslope regime, using the same definition for the bottom mixed layer thickness. It is shown that this asymmetry is associated with the depth scale over which turbulent stresses are active. These results are a step toward improving parameterizations of BBL properties and evolution over sloping topography in coarse-resolution ocean models.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaozhou Ruan, xruan@mit.edu

Abstract

The influence of a sloping bottom and stratification on the evolution of an oceanic bottom boundary layer (BBL) in the presence of a mean flow is explored. As a complement to an earlier study by Ruan et al. (https://doi.org/10.1175/JPO-D-18-0079.1) examining Ekman arrest in a downslope regime, this paper describes turbulence and BBL dynamics during Ekman arrest in the upslope regime. In the upslope regime, an enhanced stratification develops in response to the upslope Ekman transport and suppresses turbulence. Using a suite of large-eddy simulations, we show that the BBL evolution can be described in a self-similar framework based on a nondimensional number X/Xa. This nondimensional number is defined as the ratio between the lateral displacement of density surfaces across the slope X and a displacement Xa required for Ekman arrest; the latter can be predicted from external parameters. Additionally, the evolution of the depth-integrated potential vorticity is considered in both upslope and downslope regimes. The PV destruction rate in the downslope regime is found to be twice the production rate in the upslope regime, using the same definition for the bottom mixed layer thickness. It is shown that this asymmetry is associated with the depth scale over which turbulent stresses are active. These results are a step toward improving parameterizations of BBL properties and evolution over sloping topography in coarse-resolution ocean models.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaozhou Ruan, xruan@mit.edu
Save