Structure of Submesoscale Fronts of the Mississippi River Plume

Tao Wang Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, China
Pilot National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Tao Wang in
Current site
Google Scholar
PubMed
Close
,
Roy Barkan Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
Department of Geosciences, Tel Aviv University, Ramat Aviv, Israel

Search for other papers by Roy Barkan in
Current site
Google Scholar
PubMed
Close
,
James C. McWilliams Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by James C. McWilliams in
Current site
Google Scholar
PubMed
Close
, and
M. Jeroen Molemaker Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by M. Jeroen Molemaker in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Submesoscale currents (SMCs), in the forms of fronts, filaments, and vortices, are studied using a high-resolution (~150 m) Regional Oceanic Modeling System (ROMS) simulation in the Mississippi River plume system. Fronts and filaments are identified by large horizontal velocity and buoyancy gradients, surface convergence, and cyclonic vertical vorticity with along-coast fronts and along-plume-edge filaments notably evident. Frontogenesis and arrest/destruction are two fundamental phases in the life cycle of fronts and filaments. In the Mississippi River plume region, the horizontal advective tendency induced by confluence and convergence plays a primary role in frontogenesis. Confluent currents sharpen preexisting horizontal buoyancy gradients and initiate frontogenesis. Once the fronts and filaments are formed and the Rossby number reaches O(1), they further evolve frontogenetically mainly by convergent secondary circulations, which can be maintained by different cross-front momentum balance regimes. Confluent motions and preexisting horizontal buoyancy gradients depend on the interaction between wind-induced Ekman transport and the spreading plume water. Consequently, the direction of wind has a significant effect on the temporal variability of SMCs, with more active SMCs generated during a coastally downwelling-favorable wind and fewer SMCs during an upwelling-favorable wind. Submesoscale instabilities (~1–3 km) play a primary role in the arrest and fragmentation of most fronts and filaments. These instabilities propagate along the fronts and filaments, and their energy conversion is a mixed barotropic–baroclinic type with horizontal-shear instabilities dominating.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tao Wang, haidawangtao@163.com; taowang@ouc.edu.cn

Abstract

Submesoscale currents (SMCs), in the forms of fronts, filaments, and vortices, are studied using a high-resolution (~150 m) Regional Oceanic Modeling System (ROMS) simulation in the Mississippi River plume system. Fronts and filaments are identified by large horizontal velocity and buoyancy gradients, surface convergence, and cyclonic vertical vorticity with along-coast fronts and along-plume-edge filaments notably evident. Frontogenesis and arrest/destruction are two fundamental phases in the life cycle of fronts and filaments. In the Mississippi River plume region, the horizontal advective tendency induced by confluence and convergence plays a primary role in frontogenesis. Confluent currents sharpen preexisting horizontal buoyancy gradients and initiate frontogenesis. Once the fronts and filaments are formed and the Rossby number reaches O(1), they further evolve frontogenetically mainly by convergent secondary circulations, which can be maintained by different cross-front momentum balance regimes. Confluent motions and preexisting horizontal buoyancy gradients depend on the interaction between wind-induced Ekman transport and the spreading plume water. Consequently, the direction of wind has a significant effect on the temporal variability of SMCs, with more active SMCs generated during a coastally downwelling-favorable wind and fewer SMCs during an upwelling-favorable wind. Submesoscale instabilities (~1–3 km) play a primary role in the arrest and fragmentation of most fronts and filaments. These instabilities propagate along the fronts and filaments, and their energy conversion is a mixed barotropic–baroclinic type with horizontal-shear instabilities dominating.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tao Wang, haidawangtao@163.com; taowang@ouc.edu.cn
Save
  • Akan, C., J. C. McWilliams, S. Moghimi, and H. T. Ozkan-Haller, 2018: Frontal dynamics at the edge of the Columbia River plume. Ocean Modell., 122, 112, https://doi.org/10.1016/j.ocemod.2017.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersson, A., K. Fennig, C. Klepp, S. Bakan, H. Graßl, and J. Schulz, 2010: The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data – HOAPS-3. Earth Syst. Sci. Data, 2, 215234, http://doi.org/10.5194/essd-2-215-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Androulidakis, Y. S., V. H. Kourafalou, and R. V. Schiller, 2015: Process studies on the evolution of the Mississippi river plume: Impact of topography, wind and discharge conditions. Cont. Shelf Res., 107, 3349, https://doi.org/10.1016/j.csr.2015.07.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barkan, R., J. C. McWilliams, A. F. Shchepetkin, M. J. Molemaker, L. Renault, A. Bracco, and J. Choi, 2017: Submesoscale dynamics in the northern Gulf of Mexico. Part I: Regional and seasonal characterization, and the role of river outflow. J. Phys. Oceanogr., 47, 23252346, https://doi.org/10.1175/JPO-D-17-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barkan, R., M. J. Molemaker, K. Srinivasan, J. C. McWilliams, and E. D’Asaro, 2019: The role of horizontal divergence in submesoscale frontogenesis. J. Phys. Oceanogr., 49, 15931618, https://doi.org/10.1175/JPO-D-18-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, https://doi.org/10.1175/JPO3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brannigan, L., D. P. Marshall, A. C. N. Garabato, A. J. G. Nurser, and J. Kaiser, 2017: Submesoscale instabilities in mesoscale eddies. J. Phys. Oceanogr., 47, 30613085, https://doi.org/10.1175/JPO-D-16-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., G. Flierl, R. Ferrari, and B. Fox-Kemper, 2016: The role of mixed-layer instabilities in submesoscale turbulence. J. Fluid Mech., 788, 541, https://doi.org/10.1017/jfm.2015.700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California Current System. Part II: Frontal processes. J. Phys. Oceanogr., 38, 4464, https://doi.org/10.1175/2007JPO3672.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., C. Lee, L. Rainville, R. Harcourt, and L. Thomas, 2011: Enhanced turbulence and energy dissipation at ocean fronts. Science, 332, 318322, https://doi.org/10.1126/science.1201515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., and Coauthors, 2018: Ocean convergence and the dispersion of flotsam. Proc. Natl. Acad. Sci. USA, 115, 11621167, https://doi.org/10.1073/pnas.1718453115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dauhajre, D., J. C. McWilliams, and Y. Uchiyama, 2017: Submesoscale coherent structures on the continental shelf. J. Phys. Oceanogr., 47, 29492976, https://doi.org/10.1175/JPO-D-16-0270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiMarco, S. F., and R. O. Reid, 1998: Characterization of the principle tidal current constituents on the Texas-Louisiana shelf. J. Geophys. Res., 103, 30933109, https://doi.org/10.1029/97JC03289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fong, D. A., and W. R. Geyer, 2001: Response of a river plume during an upwelling favorable wind event. J. Geophys. Res., 106, 10671084, https://doi.org/10.1029/2000JC900134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, https://doi.org/10.1175/2007JPO3792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garvine, R. W., 1974: Dynamics of small-scale oceanic fronts. J. Phys. Oceanogr., 4, 557569, https://doi.org/10.1175/1520-0485(1974)004<0557:DOSSOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geyer, W. R., and D. K. Ralston, 2015: Estuarine frontogenesis. J. Phys. Oceanogr., 45, 546561, https://doi.org/10.1175/JPO-D-14-0082.1.

  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2014: Submesoscale cold filaments in the Gulf Stream. J. Phys. Oceanogr., 44, 26172643, https://doi.org/10.1175/JPO-D-14-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hetland, R. D., 2017: Suppression of baroclinic instabilities in buoyancy-driven flow over sloping bathymetry. J. Phys. Oceanogr., 47, 4968, https://doi.org/10.1175/JPO-D-15-0240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, A. E., and Coauthors, 1993: Dynamics of tidal mixing fronts in the North Sea. Philos. Trans. Roy. Soc. London, 343A, 431446, https://doi.org/10.1098/rsta.1993.0057.

    • Search Google Scholar
    • Export Citation
  • Horner-Devine, A. R., C. C. Chickadel, and D. G. MacDonald, 2013: Coherent structures and mixing at a river plume front. Coherent Flow Structures in Geophysical Flows at the Earth’s Surface, J. Venditti et al., Eds., Wiley, 359–369.

    • Crossref
    • Export Citation
  • Horner-Devine, A. R., R. D. Hetland, and D. G. MacDonald, 2015: Mixing and transport in coastal river plumes. Annu. Rev. Fluid Mech., 47, 569594, https://doi.org/10.1146/annurev-fluid-010313-141408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B., 1982: The mathematical theory of frontogenesis. Annu. Rev. Fluid Mech., 14, 131151, https://doi.org/10.1146/annurev.fl.14.010182.001023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, C., F. E. Muller-Karger, C. Taylor, K. L. Carder, C. Kelble, E. Johns, and C. A. Heil, 2005: Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters. Remote Sens. Environ., 97, 311321, https://doi.org/10.1016/j.rse.2005.05.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huguenard, K. D., and Coauthors, 2016: On the nature of the frontal zone of the Choctawhatchee Bay plume in the Gulf of Mexico. J. Geophys. Res. Oceans, 121, 13221345, https://doi.org/10.1002/2015JC010988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilcher, L. F., and J. D. Nash, 2010: Structure and dynamics of the Columbia River tidal plume front. J. Geophys. Res., 115, C05S90, https://doi.org/10.1029/2009JC006066.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Yeager, 2009: The global climatology of an inter-annually varying air-sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G. X., Z. Yang, S. Yue, K. Zhuang, and H. Wei, 2001: Sedimentation in the shear front off the Yellow River Mouth. Cont. Shelf Res., 21, 607625, https://doi.org/10.1016/S0278-4343(00)00097-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., 2016: The impact of submesoscale physics on primary productivity of plankton. Annu. Rev. Mar. Sci., 8, 161184, https://doi.org/10.1146/annurev-marine-010814-015912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, E., J. Molemaker, A. F. Shchepetkin, F. Colas, J. C. McWilliams, and P. Sangrà, 2010: Procedures for offline grid nesting in regional ocean models. Ocean Modell., 35, 115, https://doi.org/10.1016/j.ocemod.2010.05.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazzini, P. L. F., and R. J. Chant, 2016: Two-dimensional circulation and mixing in the far field of a surface-advected river plume. J. Geophys. Res. Oceans, 121, 37573776, https://doi.org/10.1002/2015JC011059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc. London, 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2017: Submesoscale surface fronts and filaments: Secondary circulation, buoyancy flux, and frontogenesis. J. Fluid Mech., 823, 391432, https://doi.org/10.1017/jfm.2017.294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2021: Oceanic frontogenesis. Annu. Rev. Mar. Sci., 13, 227253, https://doi.org/10.1146/annurev-marine-032320-120725.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and M. J. Molemaker, 2011: Baroclinic frontal arrest: A sequel to unstable frontogenesis. J. Phys. Oceanogr., 41, 601619, https://doi.org/10.1175/2010JPO4493.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., I. Yavneh, M. Cullen, and P. Gent, 1998: The breakdown of large-scale flows in rotating, stratified fluids. Phys. Fluids, 10, 31783184, https://doi.org/10.1063/1.869844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., J. Gula, M. J. Molemaker, L. Renault, and A. F. Shchepetkin, 2015: Filament frontogenesis by boundary layer turbulence. J. Phys. Oceanogr., 45, 19882005, https://doi.org/10.1175/JPO-D-14-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molemaker, M., J. McWilliams, and X. Capet, 2010: Balanced and unbalanced routes to dissipation in an equilibrated Eady flow. J. Fluid Mech., 654, 3563, https://doi.org/10.1017/S0022112009993272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molemaker, M., J. McWilliams, and W. Dewar, 2015: Submesoscale instability and generation of mesoscale anticyclones near a separation of the California Undercurrent. J. Phys. Oceanogr., 45, 613629, https://doi.org/10.1175/JPO-D-13-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagai, T., A. Tandon, and D. Rudnick, 2006: Two-dimensional ageostrophic secondary circulations at ocean fronts due to vertical mixing and large-scale deformation. J. Geophys. Res., 111, C09038, https://doi.org/10.1029/2005JC002964.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Donnell, J., 2010: The dynamics of estuary plumes and fronts. Contemporary Issues in Estuarine Physics, A. V. Levinson, Ed., Cambridge University Press, 186–246.

    • Crossref
    • Export Citation
  • O’Donnell, J., G. O. Marmorino, and C. L. Trump, 1998: Convergence and downwelling at a river plume front. J. Phys. Oceanogr., 28, 14811495, https://doi.org/10.1175/1520-0485(1998)028<1481:CADAAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orton, P. M., and D. A. Jay, 2005: Observations at the tidal plume front of a high-volume river outflow. Geophys. Res. Lett., 32, L11605, https://doi.org/10.1029/2005GL022372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, J., and D. A. Jay, 2009: Dynamic characteristics and horizontal transports of internal solitons generated at the Columbia River plume front. Cont. Shelf Res., 29, 252262, https://doi.org/10.1016/j.csr.2008.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poje, A. C., and Coauthors, 2014: Submesoscale dispersion in the vicinity of the Deepwater Horizon spill. Proc. Natl. Acad. Sci. USA, 111, 12 69312 698, https://doi.org/10.1073/pnas.1402452111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Risien, C. M., and D. B. Chelton, 2008: A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J. Phys. Oceanogr., 38, 23792413, https://doi.org/10.1175/2008JPO3881.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rouse, L., 1998: Circulation and hydrographic structure in the vicinity of the Mississippi River Delta. An Observational Study of the Mississippi-Atchafalaya Coastal Plume, S. P. Murray, Ed., Minerals Management Service, 107–124.

  • Schiller, R., V. Kourafalou, P. Hogan, and N. Walker, 2011: The dynamics of the Mississippi River plume: Impact of topography, wind and offshore forcing on the fate of plume waters. J. Geophys. Res., 116, C06029, https://doi.org/10.1029/2010JC006883.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A., 2015: An adaptive, Courant-number-dependent implicit scheme for vertical advection in oceanic modeling. Ocean Modell., 91, 3869, https://doi.org/10.1016/j.ocemod.2015.03.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shcherbina, A., E. D’Asara, C. Lee, J. Klymak, M. Molemaker, and J. McWilliams, 2013: Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophys. Res. Lett., 40, 47064711, https://doi.org/10.1002/grl.50919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solodoch, A., M. Molemaker, K. Srinivasan, M. Berta, L. Marie, and A. Jagannathan, 2020: Observations of shoaling density current regime changes in internal wave interactions. J. Phys. Oceanogr., 50, 17331751, https://doi.org/10.1175/JPO-D-19-0176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Souza, A. J., and J. Simpson, 1997: Controls on stratification in the RHINE ROFI system. J. Mar. Syst., 12, 311323, https://doi.org/10.1016/S0924-7963(96)00105-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and J. C. McWilliams, 2018: Frontogenesis and frontal arrest of a dense filament in the oceanic surface boundary layer. J. Fluid Mech., 837, 341380, https://doi.org/10.1017/jfm.2017.833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., and C. M. Lee, 2005: Intensification of ocean fronts by down-front winds. J. Phys. Oceanogr., 35, 10861102, https://doi.org/10.1175/JPO2737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., A. Tandon, and A. Mahadevan, 2008: Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 17–38.

    • Crossref
    • Export Citation
  • Walker, N. D., J. W. J. Wiseman, L. J. Rouse, and A. Babin, 2005: Effects of river discharge, wind stress, and slope eddies on circulation and the satellite-observed structure of the Mississippi River plume. J. Coast. Res., 21, 12281244, https://doi.org/10.2112/04-0347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, T., and W. R. Geyer, 2018: The balance of salinity variance in a partially stratified estuary: Implications for exchange flow, mixing, and stratification. J. Phys. Oceanogr., 48, 28872899, https://doi.org/10.1175/JPO-D-18-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, T., W. R. Geyer, and P. MacCready, 2017: Total exchange flow, entrainment and diffusive salt flux in estuaries. J. Phys. Oceanogr., 47, 12051220, https://doi.org/10.1175/JPO-D-16-0258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, T., F. Chai, X. Xing, J. Ning, W. S. Jiang, and S. Riser, 2021: Influence of multi-scale dynamic on the nitrate distribution around the Kuroshio Extension: An investigation based on BGC-Argo and satellite data. Prog. Oceanogr., https://doi.org/10.1016/j.pocean.2021.102543, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiseman, W. J., Jr., and S. P. Dinnel, 1988: Shelf currents near the mouth of the Mississippi River. J. Phys. Oceanogr., 18, 12871291, https://doi.org/10.1175/1520-0485(1988)018<1287:SCNTMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiseman, W. J., Jr., J. M. Bane, S. P. Murray, and M. W. Tubman, 1976: Small-scale temperature and salinity structure over the inner shelf west of the Mississippi River delta. Mem. Soc. Roy. Sci. Liege, 10, 277285.

    • Search Google Scholar
    • Export Citation
  • Wright, L., and J. M. Coleman, 1971: Effluent expansion and interfacial mixing in the presence of a salt wedge, Mississippi river delta. J. Geophys. Res., 76, 86498661, https://doi.org/10.1029/JC076i036p08649.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 697 0 0
Full Text Views 974 387 31
PDF Downloads 1018 355 18