A Modified Finescale Parameterization for Turbulent Mixing in the Western Equatorial Pacific

Chang-Rong Liang State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
Key Laboratory of Science and Technology on Operational Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

Search for other papers by Chang-Rong Liang in
Current site
Google Scholar
PubMed
Close
,
Xiao-Dong Shang State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
Key Laboratory of Science and Technology on Operational Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

Search for other papers by Xiao-Dong Shang in
Current site
Google Scholar
PubMed
Close
,
Yong-Feng Qi State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

Search for other papers by Yong-Feng Qi in
Current site
Google Scholar
PubMed
Close
,
Gui-Ying Chen State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
Key Laboratory of Science and Technology on Operational Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

Search for other papers by Gui-Ying Chen in
Current site
Google Scholar
PubMed
Close
, and
Ling-Hui Yu State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

Search for other papers by Ling-Hui Yu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Finescale parameterizations are of great importance to explore the turbulent mixing in the open ocean due to the difficulty of microstructure measurements. Studies based on finescale parameterizations have greatly aided our knowledge of the turbulent mixing in the open ocean. In this study, we introduce a modified finescale parameterization (MMG) based on shear/strain variance ratio Rω and compare it with three existing parameterizations, namely, the MacKinnon–Gregg (MG) parameterization, the Gregg–Henyey–Polzin (GHP) parameterization based on shear and strain variances, and the GHP parameterization based on strain variance. The result indicates that the prediction of MG parameterization is the best, followed by the MMG parameterization, then the shear-and-strain-based GHP parameterization, and finally the strain-based GHP parameterization. The strain-based GHP parameterization is less effective than the shear-and-strain-based GHP parameterization, which is mainly due to its excessive dependence on stratification. The predictions of the strain-based MMG parameterization can be comparable to that of the MG parameterization and better than that of the shear-and-strain-based GHP parameterization. Most importantly, MMG parameterization is even effective over rough topography where the GHP parameterization fails. This modified MMG parameterization with prescribed Rω can be applied to extensive CTD data. It would be a useful tool for researchers to explore the turbulent mixing in the open ocean.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiao-Dong Shang, xdshang@scsio.ac.cn

Abstract

Finescale parameterizations are of great importance to explore the turbulent mixing in the open ocean due to the difficulty of microstructure measurements. Studies based on finescale parameterizations have greatly aided our knowledge of the turbulent mixing in the open ocean. In this study, we introduce a modified finescale parameterization (MMG) based on shear/strain variance ratio Rω and compare it with three existing parameterizations, namely, the MacKinnon–Gregg (MG) parameterization, the Gregg–Henyey–Polzin (GHP) parameterization based on shear and strain variances, and the GHP parameterization based on strain variance. The result indicates that the prediction of MG parameterization is the best, followed by the MMG parameterization, then the shear-and-strain-based GHP parameterization, and finally the strain-based GHP parameterization. The strain-based GHP parameterization is less effective than the shear-and-strain-based GHP parameterization, which is mainly due to its excessive dependence on stratification. The predictions of the strain-based MMG parameterization can be comparable to that of the MG parameterization and better than that of the shear-and-strain-based GHP parameterization. Most importantly, MMG parameterization is even effective over rough topography where the GHP parameterization fails. This modified MMG parameterization with prescribed Rω can be applied to extensive CTD data. It would be a useful tool for researchers to explore the turbulent mixing in the open ocean.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiao-Dong Shang, xdshang@scsio.ac.cn
Save
  • Carter, G. S., and M. C. Gregg, 2002: Intense, variable mixing near the head of Monterey Submarine Canyon. J. Phys. Oceanogr., 32, 31453165, https://doi.org/10.1175/1520-0485(2002)032<3145:IVMNTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Damerell, G. M., K. J. Heywood, D. P. Stevens, and A. C. N. Garabato, 2012: Temporal variability of diapycnal mixing in Shag Rocks passage. J. Phys. Oceanogr., 42, 370385, https://doi.org/10.1175/2011JPO4573.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frants, M., G. M. Damerell, S. T. Gille, K. J. Heywood, J. MacKinnon, and J. Sprintall, 2013: An assessment of density-based finescale methods for estimating diapycnal diffusivity in the Southern Ocean. J. Atmos. Ocean. Tech., 30, 26472661, https://doi.org/10.1175/JTECH-D-12-00241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408, 453457, https://doi.org/10.1038/35044048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garabato, A. C. N., K. L. Polzin, B. A. King, K. J. Heywood, and M. Visbeck, 2004: Widespread intense turbulent mixing in the Southern Ocean. Science, 303, 210213, https://doi.org/10.1126/science.1090929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1979: Internal waves in the ocean. Annu. Rev. Fluid Mech., 11, 339369, https://doi.org/10.1146/annurev.fl.11.010179.002011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1987: Diapycnal mixing in the thermocline: A review. J. Geophys. Res., 92, 52495286, https://doi.org/10.1029/JC092iC05p05249.

  • Gregg, M. C., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 96869698, https://doi.org/10.1029/JC094iC07p09686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., T. B. Sanford, and D. P. Winkel, 2003: Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422, 513515, https://doi.org/10.1038/nature01507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henyey, F. S., J. Wright, and S. M. Flatté, 1986: Energy and action flow through the internal wave field: An eikonal approach. J. Geophys. Res., 91, 84878495, https://doi.org/10.1029/JC091iC07p08487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hibiya, T., N. Furuichi, and R. Robertson, 2012: Assessment of fine-scale parameterizations of turbulent dissipation rates near mixing hotspots in the deep ocean. Geophys. Res. Lett., 39, L24601, https://doi.org/10.1029/2012GL054068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, Z., and L. X. Wu, 2010: Seasonal variation of turbulent diapycnal mixing in the northwestern Pacific stirred by wind stress. Geophys. Res. Lett., 37, L23604, https://doi.org/10.1029/2010GL045418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, Z., L. X. Wu, L. Li, C. Y. Liu, X. Liang, Z. H. Chen, D. X. Hu, and Q. Y. Liu, 2011: Turbulent diapycnal mixing in the subtropical northwestern Pacific: Spatial-seasonal variations and role of eddies. J. Geophys. Res., 116, C10028, https://doi.org/10.1029/2011JC007142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and Coauthors, 2006: An estimate of tidal energy lost to turbulence at the Hawaiian Ridge. J. Phys. Oceanogr., 36, 11481164, https://doi.org/10.1175/JPO2885.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., 2003: Yes, we have no abyssal mixing. Near-Boundary Processes and Their Parameterizations: Proc.‘Aha Huliko‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 85–93.

  • Kunze, E., 2017: Internal-wave-driven mixing: Global geography and budgets. J. Phys. Oceanogr., 47, 13251345, https://doi.org/10.1175/JPO-D-16-0141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., and J. M. Toole, 1997: Tidally driven vorticity, diurnal shear, and turbulence atop Fieberling Seamount. J. Phys. Oceanogr., 27, 26632693, https://doi.org/10.1175/1520-0485(1997)027<2663:TDVDSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., E. Firing, J. M. Hummon, T. K. Chereskin, and A. M. Thurnherr, 2006: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 36, 15531576, https://doi.org/10.1175/JPO2926.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1993: Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature, 364, 701703, https://doi.org/10.1038/364701a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., E. T. Montgomery, K. L. Polzin, L. C. St Laurent, R. W. Schmitt, and J. M. Toole, 2000: Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403, 179182, https://doi.org/10.1038/35003164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, C. R., G. Y. Chen, and X. D. Shang, 2017: Observations of the turbulent kinetic energy dissipation rate in the upper central South China Sea. Ocean Dyn., 67, 597609, https://doi.org/10.1007/s10236-017-1051-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, C. R., X. D. Shang, Y. F. Qi, G. Y. Chen, and L. H. Yu, 2018: Assessment of fine-scale parameterizations at low latitudes of the North Pacific. Sci. Rep., 8, 10281, https://doi.org/10.1038/s41598-018-28554-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, C. R., X. D. Shang, Y. F. Qi, G. Y. Chen, and L. H. Yu, 2019: Enhanced diapycnal mixing between water masses in the western equatorial Pacific. J. Geophys. Res. Oceans, 124, 81028115, https://doi.org/10.1029/2019JC015463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z. Y., Q. Lian, F. T. Zhang, L. Wang, M. M. Li, X. L. Bai, J. N. Wang, and F. Wang, 2017: Weak thermocline mixing in the North Pacific low-latitude western boundary current system. Geophys. Res. Lett., 44, 10 53010 539, https://doi.org/10.1002/2017GL075210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lueck, R. G., and T. D. Mudge, 1997: Topographically induced mixing around a shallow seamount. Science, 276, 18311833, https://doi.org/10.1126/science.276.5320.1831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and M. C. Gregg, 2003: Mixing on the late-summer New England shelf—Solibores, shear, and stratification. J. Phys. Oceanogr., 33, 14761492, https://doi.org/10.1175/1520-0485(2003)033<1476:MOTLNE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and M. C. Gregg, 2005: Spring mixing: Turbulence and internal waves during restratification on the New England shelf. J. Phys. Oceanogr., 35, 24252443, https://doi.org/10.1175/JPO2821.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauritzen, C., K. L. Polzin, M. S. McCartney, R. C. Millard, and D. E. West-Mack, 2002: Evidence in hydrography and density fine structure for enhanced vertical mixing over the Mid-Atlantic Ridge in the western Atlantic. J. Geophys. Res., 107, 3147, https://doi.org/10.1029/2001JC001114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1966: Abyssal recipes. Deep-Sea Res., 13, 707730, https://doi.org/10.1016/0011-7471(66)90602-4.

  • Munk, W. H. 1981: Internal waves and small scale processes. Evolution of Physical Oceanography, MIT Press, 264–291.

  • Munk, W. H., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oakey, N. S., 1982: Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J. Phys. Oceanogr., 12, 256271, https://doi.org/10.1175/1520-0485(1982)012<0256:DOTROD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, M. R., T. P. Rippeth, and J. H. Simpson, 2008: An investigation of internal mixing in a seasonally stratified shelf sea. J. Geophys. Res., 113, C12005, https://doi.org/10.1029/2007JC004531.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, and R. W. Schmitt, 1995: Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr., 25, 306328, https://doi.org/10.1175/1520-0485(1995)025<0306:FPOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., A. C. N. Garabato, T. N. Huussen, B. M. Sloyan, and S. Waterman, 2014: Finescale parameterizations of turbulent dissipation. J. Geophys. Res. Oceans, 119, 13831419, https://doi.org/10.1002/2013JC008979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rice, J. A., 2006: Mathematical Statistics and Data Analysis. Nelson Education, 688 pp.

  • Shang, X. D., Y. F. Qi, G. Y. Chen, C. R. Liang, R. G. Lueck, B. Prairie, and H. Li, 2017a: An expendable microstructure profiler for deep ocean measurements. J. Atmos. Oceanic Technol., 34, 153165, https://doi.org/10.1175/JTECH-D-16-0083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shang, X. D., C. R. Liang, and G. Y. Chen, 2017b: Spatial distribution of turbulent mixing in the upper ocean of the South China Sea. Ocean Sci., 13, 503519, https://doi.org/10.5194/os-13-503-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheen, K. L., and Coauthors, 2013: Rates and mechanisms of turbulent dissipation and mixing in the Southern Ocean: Results from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). J. Geophys. Res. Oceans, 118, 27742792, https://doi.org/10.1002/jgrc.20217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., 2005: Spatial variability of mixing in the Southern Ocean. Geophys. Res. Lett., 32, L18603127, https://doi.org/10.1029/2005GL023568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stöber, U., M. Walter, C. Mertens, and M. Rhein, 2008: Mixing estimates from hydrographic measurements in the deep western boundary current of the North Atlantic. Deep-Sea Res. I, 55, 721736, https://doi.org/10.1016/j.dsr.2008.03.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, H., Q. X. Yang, and J. W. Tian, 2018: Microstructure measurements and finescale parameterization assessment of turbulent mixing in the northern South China Sea. J. Oceanogr., 74, 485498, https://doi.org/10.1007/s10872-018-0474-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, A., and T. Hibiya, 2019: Assessment of finescale parameterizations of deep ocean mixing in the presence of geostrophic current shear: Results of microstructure measurements in the Antarctic circumpolar current region. J. Geophys. Res. Oceans, 124, 135153, https://doi.org/10.1029/2018JC014030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurnherr, A. M., 2011: How to process LADCP data with the LDEO software. ftp://ftp.ldeo.columbia.edu/pub/ant/LADCP/UserManuals/.

  • van der Lee, E. M., and L. Umlauf, 2011: Internal wave mixing in the Baltic Sea: Near-inertial waves in the absence of tides. J. Geophys. Res., 116, C10016, https://doi.org/10.1029/2011JC007072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, https://doi.org/10.1175/JPO-D-13-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., L. D. Talley, and J. A. MacKinnon, 2012: Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophys. Res. Lett., 39, L18612, https://doi.org/10.1029/2012GL053196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., J. A. Mackinnon, L. D. Talley, and A. F. Waterhouse, 2015: Estimating the mean diapycnal mixing using a finescale strain parameterization. J. Phys. Oceanogr., 45, 11741188, https://doi.org/10.1175/JPO-D-14-0167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijesekera, H., L. Padman, T. Dillon, M. Levine, C. Paulson, and R. Pinkel, 1993: The application of internal-wave dissipation models to a region of strong mixing. J. Phys. Oceanogr., 23, 269286, https://doi.org/10.1175/1520-0485(1993)023<0269:TAOIWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L. X., Z. Jing, S. Riser, and M. Visbeck, 2011: Seasonal and spatial variations of Southern Ocean diapycnal mixing from Argo profiling floats. Nat. Geosci., 4, 363366, https://doi.org/10.1038/ngeo1156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, https://doi.org/10.1146/annurev.fluid.36.050802.122121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, X. H., Y. Cuypers, P. Bouruet-Aubertot, B. Ferron, A. Pichon, A. Lourenco, and N. Cortes, 2013: Large-amplitude internal tides, solitary waves, and turbulence in the central Bay of Biscay. Geophys. Res. Lett., 40, 27482754, https://doi.org/10.1002/grl.50533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q. X., W. Zhao, M. Li, and J. W. Tian, 2014: Spatial structure of turbulent mixing in the northwestern Pacific Ocean. J. Phys. Oceanogr., 44, 22352247, https://doi.org/10.1175/JPO-D-13-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z. W., B. Qiu, J. W. Tian, W. Zhao, and X. D. Huang, 2018: Latitude-dependent finescale turbulent shear generations in the Pacific tropical-extratropical upper ocean. Nat. Commun., 9, 4086, https://doi.org/10.1038/s41467-018-06260-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 317 0 0
Full Text Views 416 170 18
PDF Downloads 419 124 21