Deep Eastern Boundary Currents: Idealized Models and Dynamics

Xiaoting Yang Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts

Search for other papers by Xiaoting Yang in
Current site
Google Scholar
PubMed
Close
,
Eli Tziperman Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts

Search for other papers by Eli Tziperman in
Current site
Google Scholar
PubMed
Close
, and
Kevin Speer Geophysical Fluid Dynamics Institute, Florida State University, Tallahassee, Florida
Department of Scientific Computing, Florida State University, Tallahassee, Florida

Search for other papers by Kevin Speer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Concentrated poleward flows along eastern boundaries between 2- and 4-km depth in the southeast Pacific, Atlantic, and Indian Oceans have been observed, and appear in data assimilation products and regional model simulations at sufficiently high horizontal resolution, but their dynamics are still not well understood. We study the local dynamics of these deep eastern boundary currents (DEBCs) using idealized GCM simulations, and we use a conceptual vorticity model for the DEBCs to gain additional insights into the dynamics. Over most of the zonal width of the DEBCs, the vorticity balance is between meridional advection of planetary vorticity and vortex stretching, which is an interior-like vorticity balance. Over a thinner layer very close to the eastern boundary, a balance between vorticity tendencies due to friction and stretching that rapidly decay away from the boundary is found. Over the part of the DEBC that is governed by an interior-like vorticity balance, vertical stretching is driven by both the topography and temperature diffusion, while in the thinner boundary layer, it is driven instead by parameterized horizontal temperature mixing. The topographic driving acts via a cross-isobath flow that leads to stretching and thus to vorticity forcing for the concentrated DEBCs.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-20-0227.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaoting Yang, xiaoting_yang@g.harvard.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JPO-D-20-0002.1.

Abstract

Concentrated poleward flows along eastern boundaries between 2- and 4-km depth in the southeast Pacific, Atlantic, and Indian Oceans have been observed, and appear in data assimilation products and regional model simulations at sufficiently high horizontal resolution, but their dynamics are still not well understood. We study the local dynamics of these deep eastern boundary currents (DEBCs) using idealized GCM simulations, and we use a conceptual vorticity model for the DEBCs to gain additional insights into the dynamics. Over most of the zonal width of the DEBCs, the vorticity balance is between meridional advection of planetary vorticity and vortex stretching, which is an interior-like vorticity balance. Over a thinner layer very close to the eastern boundary, a balance between vorticity tendencies due to friction and stretching that rapidly decay away from the boundary is found. Over the part of the DEBC that is governed by an interior-like vorticity balance, vertical stretching is driven by both the topography and temperature diffusion, while in the thinner boundary layer, it is driven instead by parameterized horizontal temperature mixing. The topographic driving acts via a cross-isobath flow that leads to stretching and thus to vorticity forcing for the concentrated DEBCs.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-20-0227.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaoting Yang, xiaoting_yang@g.harvard.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JPO-D-20-0002.1.

Supplementary Materials

    • Supplemental Materials (PDF 319.94 KB)
Save
  • Barcilon, V., and J. Pedlosky, 1967: A unified linear theory of homogeneous and stratified rotating fluids. J. Fluid Mech., 29, 609621, https://doi.org/10.1017/S0022112067001053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benthuysen, J., R. Furue, J. P. McCreary, N. L. Bindoff, and H. E. Phillips, 2014: Dynamics of the Leeuwin Current: Part II. Impacts of mixing, friction, and advection on a buoyancy-driven eastern boundary current over a shelf. Dyn. Atmos. Oceans, 65, 3963, https://doi.org/10.1016/j.dynatmoce.2013.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bire, S., 2019: Eddy dynamics of eastern boundary currents. Ph.D. thesis, Stony Brook University, 132 pp.

  • Bire, S., and C. L. Wolfe, 2018: The role of eddies in buoyancy-driven eastern boundary currents. J. Phys. Oceanogr., 48, 28292850, https://doi.org/10.1175/JPO-D-18-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X. J., P. Marchesiello, and J. McWilliams, 2004: Upwelling response to coastal wind profiles. Geophys. Res. Lett., 31, L13311, https://doi.org/10.1029/2004GL020123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choboter, P., R. Samelson, and J. Allen, 2005: A new solution of a nonlinear model of upwelling. J. Phys. Oceanogr., 35, 532544, https://doi.org/10.1175/JPO2697.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furue, R., J. P. McCreary, J. Benthuysen, H. E. Phillips, and N. L. Bindoff, 2013: Dynamics of the Leeuwin Current: Part I. Coastal flows in an inviscid, variable-density, layer model. Dyn. Atmos. Oceans, 63, 2459, https://doi.org/10.1016/j.dynatmoce.2013.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gjermundsen, A., and J. H. LaCasce, 2017: Comparing the linear and nonlinear buoyancy-driven circulation. Tellus, 69A, 1299282, https://doi.org/10.1080/16000870.2017.1299282.

    • Search Google Scholar
    • Export Citation
  • Hickey, B. M., 1979: The California Current system––Hypotheses and facts. Prog. Oceanogr., 8, 191279, https://doi.org/10.1016/0079-6611(79)90002-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, N. G., and A. M. Thurnherr, 2005: A zonal pathway for NADW in the South Atlantic. J. Oceanogr., 61, 493507, https://doi.org/10.1007/s10872-005-0058-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, G., 1992: Representing topographic stress for large-scale ocean models. J. Phys. Oceanogr., 22, 10331046, https://doi.org/10.1175/1520-0485(1992)022<1033:RTSFLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., and B. A. De Cuevas, 2001: Why western boundary currents in realistic oceans are inviscid: A link between form stress and bottom pressure torques. J. Phys. Oceanogr., 31, 28712885, https://doi.org/10.1175/1520-0485(2001)031<2871:WWBCIR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawase, M., 1987: Establishment of deep ocean circulation driven by deep-water production. J. Phys. Oceanogr., 17, 22942317, https://doi.org/10.1175/1520-0485(1987)017<2294:EODOCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaCasce, J., 2004: Diffusivity and viscosity dependence in the linear thermocline. J. Mar. Res., 62, 743769, https://doi.org/10.1357/0022240042880864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luyten, J. R., J. Pedlosky, and H. Stommel, 1983: The ventilated thermocline. J. Phys. Oceanogr., 13, 292309, https://doi.org/10.1175/1520-0485(1983)013<0292:TVT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazloff, M. R., P. Heimbach, and C. Wunsch, 2010: An eddy-permitting Southern Ocean state estimate. J. Phys. Oceanogr., 40, 880899, https://doi.org/10.1175/2009JPO4236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., 1981: A linear stratified ocean model of the equatorial undercurrent. Philos. Trans. Roy. Soc. London, 298A, 603635, https://doi.org/10.1098/rsta.1981.0002.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., and S.-Y. Chao, 1985: Three-dimensional shelf circulation along an eastern ocean boundary. J. Mar. Res., 43, 1336, https://doi.org/10.1357/002224085788437316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., S. R. Shetye, and P. K. Kundu, 1986: Thermohaline forcing of eastern boundary currents: With application to the circulation off the west coast of Australia. J. Mar. Res., 44, 7192, https://doi.org/10.1357/002224086788460184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., P. K. Kundu, and S.-Y. Chao, 1987: On the dynamics of the California current system. J. Mar. Res., 45, 132, https://doi.org/10.1357/002224087788400945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., Y. Fukamachi, and P. Lu, 1992: A nonlinear mechanism for maintaining coastally trapped eastern boundary currents. J. Geophys. Res., 97, 56775692, https://doi.org/10.1029/92JC00035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, M., X. Yang, and E. Tziperman, 2020: Reconciling the observed mid-depth exponential ocean stratification with weak interior mixing and Southern Ocean dynamics via boundary-intensified mixing. Eur. Phys. J. Plus, 135, 375, https://doi.org/10.1140/epjp/s13360-020-00375-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1950: On the wind-driven ocean circulation. J. Meteor., 7, 8093, https://doi.org/10.1175/1520-0469(1950)007<0080:OTWDOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nof, D., and D. B. Olson, 1993: How do western abyssal currents cross the equator? Deep-Sea Res. I, 40, 235255, https://doi.org/10.1016/0967-0637(93)90002-K.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, Y.-G., 2006: Dependence of an eastern boundary current on the horizontal resolution in thermally driven circulations. J. Geophys. Res., 111, C09005, https://doi.org/10.1029/2005JC003362.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1974: Longshore Currents, upwelling and bottom topography. J. Phys. Oceanogr., 4, 214226, https://doi.org/10.1175/1520-0485(1974)004<0214:LCUABT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

  • Pedlosky, J., 2003: Thermally driven circulations in small oceanic basins. J. Phys. Oceanogr., 33, 23332340, https://doi.org/10.1175/1520-0485(2003)033<2333:TDCISO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peliz, Á., J. Dubert, D. B. Haidvogel, and B. Le Cann, 2003: Generation and unstable evolution of a density-driven eastern Poleward Current: The Iberian Poleward Current. J. Geophys. Res., 108, 3268, https://doi.org/10.1029/2002JC001443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., and W. R. Young, 1982: A theory of the wind-driven circulation. I. Mid-ocean gyres. J. Mar. Res., 40, 559596.

  • Samelson, R., 2017: Time-dependent linear theory for the generation of poleward undercurrents on eastern boundaries. J. Phys. Oceanogr., 47, 30373059, https://doi.org/10.1175/JPO-D-17-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and S. R. Rintoul, 2001: The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr., 31, 143173, https://doi.org/10.1175/1520-0485(2001)031<0143:TSOLOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, J. C., and D. P. Marshall, 2000: Dynamical pathways of Antarctic Bottom Water in the Atlantic. J. Phys. Oceanogr., 30, 622640, https://doi.org/10.1175/1520-0485(2000)030<0622:DPOABW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. O., 1984: Observations of the Leeuwin Current off Western Australia. J. Phys. Oceanogr., 14, 623628, https://doi.org/10.1175/1520-0485(1984)014<0623:OOTLCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toole, J. M., and B. A. Warren, 1993: A hydrographic section across the subtropical South Indian Ocean. Deep-Sea Res. I, 40, 19732019, https://doi.org/10.1016/0967-0637(93)90042-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tziperman, E., 1986: On the role of interior mixing and air–sea fluxes in determining the stratification and circulation of the oceans. J. Phys. Oceanogr., 16, 680693, https://doi.org/10.1175/1520-0485(1984)014<0623:OOTLCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tziperman, E., 1987: The Mediterranean outflow as an example of a deep buoyancy-driven flow. J. Geophys. Res., 92, 14 51014 520, https://doi.org/10.1029/JC092iC13p14510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Sebille, E., W. E. Johns, and L. M. Beal, 2012: Does the vorticity flux from Agulhas rings control the zonal pathway of NADW across the South Atlantic? J. Geophys. Res., 117, C05037, https://doi.org/10.1029/2011JC007684.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., and J. H. Middleton, 1989: On the dynamics of the Leeuwin Current. J. Phys. Oceanogr., 19, 626648, https://doi.org/10.1175/1520-0485(1989)019<0626:OTDOTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Well, R., W. Roether, and D. P. Stevens, 2003: An additional deep-water mass in Drake Passage as revealed by 3He data. Deep-Sea Res. I, 50, 10791098, https://doi.org/10.1016/S0967-0637(03)00050-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolfe, C., and S. Bire, 2019: Eastern boundary currents an overturning in buoyancy-driven basins. 22nd Conf. on Atmospheric and Oceanic Fluid Dynamics, Portland, ME, Amer. Meteor. Soc., 8.5, https://ams.confex.com/ams/22FLUID/meetingapp.cgi/Paper/360227.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., and P. Cessi, 2009: Overturning circulation in an eddy-resolving model: The effect of the pole-to-pole temperature gradient. J. Phys. Oceanogr., 39, 125142, https://doi.org/10.1175/2008JPO3991.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., E. Tziperman, and K. Speer, 2020a: Deep eastern boundary currents: Realistic simulations and vorticity budgets. J. Phys. Oceanogr., 50, 30773094, https://doi.org/10.1175/JPO-D-20-0002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., E. Tziperman, and K. Speer, 2020b: Dynamics of deep eastern boundary currents. Geophys. Res. Lett., 47, e2019GL085396, https://doi.org/10.1029/2019GL085396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeager, S. G., and M. Jochum, 2009: The connection between Labrador Sea buoyancy loss, deep western boundary current strength, and Gulf Stream path in an ocean circulation model. Ocean Modell., 30, 207224, https://doi.org/10.1016/j.ocemod.2009.06.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 389 0 0
Full Text Views 402 170 6
PDF Downloads 319 78 3