• Arakawa, A., and V. R. Lamb, 1981: A potential enstrophy and energy conserving scheme for the shallow water equations. Mon. Wea. Rev., 109, 1836, https://doi.org/10.1175/1520-0493(1981)109<0018:APEAEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, J. M., 1999: Effect of a western continental slope on the wind-driven circulation. J. Phys. Oceanogr., 29, 512518, https://doi.org/10.1175/1520-0485(1999)029<0512:EOAWCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berloff, P. S., 2005: On dynamically consistent eddy fluxes. Dyn. Atmos. Oceans, 38, 123146, https://doi.org/10.1016/j.dynatmoce.2004.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cane, M. A. V. M. Kamenkovich, and A. Krupitsky, 1998: On the utility and disutility of JEBAR. J. Phys. Oceanogr., 28, 519526, https://doi.org/10.1175/1520-0485(1998)028<0519:OTUADO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. DeSzoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1991: The third-order Adams–Bashforth method: An attractive alternative to leapfrog time differencing. Mon. Wea. Rev., 119, 702720, https://doi.org/10.1175/1520-0493(1991)119<0702:TTOABM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eden, C., and D. Olbers, 2010: Why western boundary currents are diffusive: A link between bottom pressure torque and bolus velocity. Ocean Modell., 32, 1424, https://doi.org/10.1016/j.ocemod.2009.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., and C. W. Hughes, 2011: Comment on “Why western boundary currents are diffusive: A link between bottom pressure torque and bolus velocity” by C. Eden and D. Olbers. Ocean Modell., 39, 416424, https://doi.org/10.1016/j.ocemod.2010.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and R. W. Hallberg, 2000: Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon. Wea. Rev., 128, 29352946, https://doi.org/10.1175/1520-0493(2000)128<2935:BFWASL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2015: Topographic vorticity generation, submesoscale instability and vortex street formation in the Gulf Stream. Geophys. Res. Lett., 42, 40544062, https://doi.org/10.1002/2015GL063731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2016: Topographic generation of submesoscale centrifugal instability and energy dissipation. Nat. Commun., 7, 12811, https://doi.org/10.1038/ncomms12811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, N. G., P. S. Pickart, R. M. Hendry, and W. J. Smethie Jr., 1986: The northern recirculation gyre of the Gulf Stream. Deep-Sea Res., 33A, 11391165, https://doi.org/10.1016/0198-0149(86)90017-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, W. R., 1973: Baroclinic and topographic influences on the transport in western boundary currents. Geophys. Fluid Dyn., 4, 187210, https://doi.org/10.1080/03091927208236095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., and B. A. de Cuevas, 2001: Why western boundary currents in realistic oceans are inviscid: A link between form stress and bottom pressure torques. J. Phys. Oceanogr., 31, 28712885, https://doi.org/10.1175/1520-0485(2001)031<2871:WWBCIR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., J. Williams, A. Blaker, A. Coward, and V. Stepanov, 2018: A window on the deep ocean: The special value of ocean bottom pressure for monitoring the large-scale, deep-ocean circulation. Prog. Oceanogr., 161, 1946, https://doi.org/10.1016/j.pocean.2018.01.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, L., C. W. Hughes, and R. G. Williams, 2006: Topographic control of basin and channel flows: The role of bottom pressure torques and friction. J. Phys. Oceanogr., 36, 17861805, https://doi.org/10.1175/JPO2936.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and et al. , 2009: The Kuroshio Extension and its recirculation gyres. Deep-Sea Res. I, 56, 20882099, https://doi.org/10.1016/j.dsr.2009.08.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubokawa, A., and J. C. McWilliams, 1996: Topographic ocean gyres: A western boundary slope. J. Phys. Oceanogr., 26, 14681479, https://doi.org/10.1175/1520-0485(1996)026<1468:TOGAWB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Corre, M., J. Gula, and A.-M. Tréguier, 2020: Barotropic vorticity balance of the North Atlantic subpolar gyre in an eddy-resolving model. Ocean Sci., 16, 451468, https://doi.org/10.5194/os-16-451-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luyten, J., and H. Stommel, 1986: Gyres driven by combined wind and buoyancy flux. J. Phys. Oceanogr., 16, 15511560, https://doi.org/10.1175/1520-0485(1986)016<1551:GDBCWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. C., 1984: Eddy-mean-flow interaction in a barotropic ocean model. Quart. J. Roy. Meteor. Soc., 110, 573590, https://doi.org/10.1002/qj.49711046502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masich, J., T. K. Chereskin, and M. R. Mazloff, 2015: Topographic form stress in the Southern Ocean state estimate. J. Geophys. Res. Oceans, 120, 79197933, https://doi.org/10.1002/2015JC011143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G., 1999: Comments on “On the utility and disutility of JEBAR.” J. Phys. Oceanogr., 29, 21172118, https://doi.org/10.1175/1520-0485(1999)029<2117:COOTUA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and W. K. Dewar, 2015: Submesoscale instability and generation of mesoscale anticyclones near a separation of the California Undercurrent. J. Phys. Oceanogr., 45, 613629, https://doi.org/10.1175/JPO-D-13-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1950: On the wind-driven ocean circulation. J. Meteor., 7, 8093, https://doi.org/10.1175/1520-0469(1950)007<0080:OTWDOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., and E. Palmén, 1951: Note on the dynamics of the Antarctic circumpolar current. Tellus, 3, 5355, https://doi.org/10.3402/tellusa.v3i1.8609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., 1966: On the theory of wind-driven ocean circulation. Deep-Sea Res., 13, 597606, https://doi.org/10.1016/0011-7471(66)90591-2.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1990: The dynamics of the oceanic subtropical gyres. Science, 248, 316322, https://doi.org/10.1126/science.248.4953.316.

  • Pedlosky, J., 2013: Geophysical Fluid Dynamics. Springer, 710 pp.

  • Poje, A. C., and G. Haller, 1999: Geometry of cross-stream mixing in a double-gyre ocean model. J. Phys. Oceanogr., 29, 16491665, https://doi.org/10.1175/1520-0485(1999)029<1649:GOCSMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Read, P. L., P. B. Rhines, and A. A. White, 1986: Geostrophic scatter diagrams and potential vorticity dynamics. J. Atmos. Sci., 43, 32263240, https://doi.org/10.1175/1520-0469(1986)043<3226:GSDAPV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1986: Vorticity dynamics of the oceanic general circulation. Annu. Rev. Fluid Mech., 18, 433497, https://doi.org/10.1146/annurev.fl.18.010186.002245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., and F. Bretherton, 1973: Topographic Rossby waves in a rough-bottomed ocean. J. Fluid Mech., 61, 583607, https://doi.org/10.1017/S002211207300087X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salmon, R., 1994: Generalized two-layer models of ocean circulation. J. Mar. Res., 52, 865908, https://doi.org/10.1357/0022240943076939.

  • Salmon, R., 2002: Numerical solution of the two-layer shallow water equations with bottom topography. J. Mar. Res., 60, 605638, https://doi.org/10.1357/002224002762324194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarkisyan, A. S., 1971: Joint effect of baroclinicity and bottom relief as an important factor in the dynamics of the sea current. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 1, 173188.

    • Search Google Scholar
    • Export Citation
  • Schoonover, J., and et al. , 2016: North Atlantic barotropic vorticity balances in numerical models. J. Phys. Oceanogr., 46, 289303, https://doi.org/10.1175/JPO-D-15-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Wea. Rev., 91, 99164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solodoch, A., A. L. Stewart, and J. C. McWilliams, 2016: Baroclinic instability of axially symmetric flow over sloping bathymetry. J. Fluid Mech., 799, 265296, https://doi.org/10.1017/jfm.2016.376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., 2019: Approximating isoneutral ocean transport via the temporal residual mean. Fluids, 4, 179, https://doi.org/10.3390/fluids4040179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and A. F. Thompson, 2015: The neutral density temporal residual mean overturning circulation. Ocean Modell., 90, 4456, https://doi.org/10.1016/j.ocemod.2015.03.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and P. J. Dellar, 2016: An energy and potential enstrophy conserving numerical scheme for the multi-layer shallow water equations with complete Coriolis force. J. Comput. Phys., 313, 99120, https://doi.org/10.1016/j.jcp.2015.12.042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and A. M. Hogg, 2017: Reshaping the Antarctic circumpolar current via Antarctic bottom water export. J. Phys. Oceanogr., 47, 25772601, https://doi.org/10.1175/JPO-D-17-0007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., P. J. Dellar, and E. R. Johnson, 2011: Numerical simulation of wave propagation along a discontinuity in depth in a rotating annulus. Comput. Fluids, 46, 442447, https://doi.org/10.1016/j.compfluid.2010.10.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., P. J. Dellar, and E. R. Johnson, 2014: Large-amplitude coastal shelf waves. Modeling Atmospheric and Oceanic Flows, T. von Larcher and P. D. Williams, Eds., Wiley, 229–253, https://doi.org/10.1002/9781118856024.ch12.

    • Crossref
    • Export Citation
  • Stewart, A. L., A. Klocker, and D. Menemenlis, 2019: Acceleration and overturning of the Antarctic Slope Current by winds, eddies, and tides. J. Phys. Oceanogr., 49, 20432074, https://doi.org/10.1175/JPO-D-18-0221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1948: The westward intensification of wind-driven ocean currents. Eos, Trans. Amer. Geophys. Union, 29, 202206, https://doi.org/10.1029/TR029i002p00202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, Z., A. L. Stewart, and A. F. Thompson, 2014: An idealized model of Weddell Gyre export variability. J. Phys. Oceanogr., 44, 16711688, https://doi.org/10.1175/JPO-D-13-0263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sverdrup, H. U., 1947: Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern Pacific. Proc. Natl. Acad. Sci. USA, 33, 318326, https://doi.org/10.1073/pnas.33.11.318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and A. C. Naveira Garabato, 2014: Equilibration of the Antarctic circumpolar current by standing meanders. J. Phys. Oceanogr., 44, 18111828, https://doi.org/10.1175/JPO-D-13-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Towns, J., and et al. , 2014: XSEDE: Accelerating scientific discovery. Comput. Sci. Eng., 16, 6274, https://doi.org/10.1109/MCSE.2014.80.

  • Tréguier, A.-M., and J. C. McWilliams, 1990: Topographic influences on wind-driven, stratified flow in a β-plane channel: An idealized model for the Antarctic Circumpolar Current. J. Phys. Oceanogr., 20, 321343, https://doi.org/10.1175/1520-0485(1990)020<0321:TIOWDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

    • Crossref
    • Export Citation
  • Wang, Y., and A. L. Stewart, 2020: Scalings for eddy buoyancy transfer across continental slopes under retrograde winds. Ocean Modell., 147, 101579, https://doi.org/10.1016/j.ocemod.2020.101579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterman, S., and S. R. Jayne, 2011: Eddy-mean flow interactions in the along-stream development of a western boundary current jet: An idealized model study. J. Phys. Oceanogr., 41, 682707, https://doi.org/10.1175/2010JPO4477.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wise, A., C. W. Hughes, and J. A. Polton, 2018: Bathymetric influence on the coastal sea level response to ocean gyres at western boundaries. J. Phys. Oceanogr., 48, 29492964, https://doi.org/10.1175/JPO-D-18-0007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, K. X., A. L. Stewart, and J. C. McWilliams, 2019: Sill-influenced exchange flows in ice shelf cavities. J. Phys. Oceanogr., 49, 163191, https://doi.org/10.1175/JPO-D-18-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 79 79 79
Full Text Views 37 37 37
PDF Downloads 53 53 53

On the Role of Bottom Pressure Torques in Wind-Driven Gyres

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
© Get Permissions
Restricted access

Abstract

Previous studies have concluded that the wind-input vorticity in ocean gyres is balanced by bottom pressure torques (BPT), when integrated over latitude bands. However, the BPT must vanish when integrated over any area enclosed by an isobath. This constraint raises ambiguities regarding the regions over which BPT should close the vorticity budget, and implies that BPT generated to balance a local wind stress curl necessitates the generation of a compensating, nonlocal BPT and thus nonlocal circulation. This study aims to clarify the role of BPT in wind-driven gyres using an idealized isopycnal model. Experiments performed with a single-signed wind stress curl in an enclosed, sloped basin reveal that BPT balances the winds only when integrated over latitude bands. Integrating over other, dynamically motivated definitions of the gyre, such as barotropic streamlines, yields a balance between wind stress curl and bottom frictional torques. This implies that bottom friction plays a nonnegligible role in structuring the gyre circulation. Nonlocal bottom pressure torques manifest in the form of along-slope pressure gradients associated with a weak basin-scale circulation, and are associated with a transition to a balance between wind stress and bottom friction around the coasts. Finally, a suite of perturbation experiments is used to investigate the dynamics of BPT. To predict the BPT, the authors extend a previous theory that describes propagation of surface pressure signals from the gyre interior toward the coast along planetary potential vorticity contours. This theory is shown to agree closely with the diagnosed contributions to the vorticity budget across the suite of model experiments.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew L. Stewart, astewart@atmos.ucla.edu

Abstract

Previous studies have concluded that the wind-input vorticity in ocean gyres is balanced by bottom pressure torques (BPT), when integrated over latitude bands. However, the BPT must vanish when integrated over any area enclosed by an isobath. This constraint raises ambiguities regarding the regions over which BPT should close the vorticity budget, and implies that BPT generated to balance a local wind stress curl necessitates the generation of a compensating, nonlocal BPT and thus nonlocal circulation. This study aims to clarify the role of BPT in wind-driven gyres using an idealized isopycnal model. Experiments performed with a single-signed wind stress curl in an enclosed, sloped basin reveal that BPT balances the winds only when integrated over latitude bands. Integrating over other, dynamically motivated definitions of the gyre, such as barotropic streamlines, yields a balance between wind stress curl and bottom frictional torques. This implies that bottom friction plays a nonnegligible role in structuring the gyre circulation. Nonlocal bottom pressure torques manifest in the form of along-slope pressure gradients associated with a weak basin-scale circulation, and are associated with a transition to a balance between wind stress and bottom friction around the coasts. Finally, a suite of perturbation experiments is used to investigate the dynamics of BPT. To predict the BPT, the authors extend a previous theory that describes propagation of surface pressure signals from the gyre interior toward the coast along planetary potential vorticity contours. This theory is shown to agree closely with the diagnosed contributions to the vorticity budget across the suite of model experiments.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew L. Stewart, astewart@atmos.ucla.edu
Save