• Badin, G., 2013: Surface semi-geostrophic dynamics in the ocean. Geophys. Astrophys. Fluid Dyn., 107, 526540, https://doi.org/10.1080/03091929.2012.740479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badin, G., 2014: On the role of non-uniform stratification and short-wave instabilities in three-layer quasi-geostrophic turbulence. Phys. Fluids, 26, 096603, https://doi.org/10.1063/1.4895590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumen, W., 1978: Uniform potential vorticity flow. Part I: Theory of wave interactions and two-dimensional turbulence. J. Atmos. Sci., 35, 774783, https://doi.org/10.1175/1520-0469(1978)035<0774:UPVFPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1966: Critical layer instability in baroclinic flows. Quart. J. Roy. Meteor. Soc., 92, 325334, https://doi.org/10.1002/qj.49709239302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buongiorno Nardelli, B., 2020: A multi-year timeseries of observation-based 3D horizontal and vertical quasi-geostrophic global ocean currents. Earth Syst. Sci. Data, 12, 17111723, https://doi.org/10.5194/essd-12-1711-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buongiorno Nardelli, B., S. Sparnocchia, and R. Santoleri, 2001: Small mesoscale features at a meandering upper-ocean front in the Western Ionian Sea (Mediterranean Sea): Vertical motion and potential vorticity analysis. J. Phys. Oceanogr., 31, 22272250, https://doi.org/10.1175/1520-0485(2001)031<2227:SMFAAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buongiorno Nardelli, B., S. Guinehut, A. Pascual, Y. Drillet, S. Ruiz, and S. Mulet, 2012: Towards high resolution mapping of 3-D mesoscale dynamics from observations. Ocean Sci., 8, 885901, https://doi.org/10.5194/os-8-885-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buongiorno Nardelli, B., S. Mulet, and D. Iudicone, 2018: Three-dimensional ageostrophic motion and water mass subduction in the Southern Ocean. J. Geophys. Res. Oceans, 123, 15331562, https://doi.org/10.1002/2017JC013316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Ferrari, J. Klymak, and J. Gula, 2015: Seasonality in submesoscale turbulence. Nat. Commun., 6, 6862, https://doi.org/10.1038/ncomms7862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavanne, C. P., and P. Klein, 2016: Quasigeostrophic diagnosis of mixed layer dynamics embedded in a mesoscale turbulent field. J. Phys. Oceanogr., 46, 275287, https://doi.org/10.1175/JPO-D-14-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., X. Wang, and L. Liu, 2020: Reconstruction of three-dimensional ocean structure from sea surface data: An application of isQG method in the Southwest Indian Ocean. J. Geophys. Res. Oceans, 125, e2020JC016351, https://doi.org/10.1029/2020JC016351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., N. A. Pelland, S. R. Emerson, and W. R. Crawford, 2015: Estimating diffusivity from the mixed layer heat and salt balances in the North Pacific. J. Geophys. Res. Oceans, 120, 73467362, https://doi.org/10.1002/2015JC011010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de La Lama, M. S., J. H. LaCasce, and H. Fuhr, 2016: The vertical structure of ocean eddies. Dyn. Stat. Climate Syst., 1, dzw001, https://doi.org/10.1093/climsys/dzw001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durand, M., L.-L. Fu, D. P. Lettenmaier, D. E. Alsdorf, E. Rodríguez, and D. Esteban-Fernandez, 2010: The surface water and ocean topography mission: Observing terrestrial surface water and oceanic submesoscale eddies. Proc. IEEE, 98, 766779, https://doi.org/10.1109/JPROC.2010.2043031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Estrada-Allis, S., B. Barceló-Llull, E. Pallàs-Sanz, A. Rodríguez-Santana, J. Souza, E. Mason, J. McWilliams, and P. Sangrà, 2019: Vertical velocity dynamics and mixing in an anticyclone near the Canary Islands. J. Phys. Oceanogr., 49, 431451, https://doi.org/10.1175/JPO-D-17-0156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2010: The distribution of eddy kinetic and potential energies in the global ocean. Tellus, 62, 92108, https://doi.org/10.3402/tellusa.v62i2.15680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fofonoff, N. P., and R. C. Millard Jr., 1983: UNESCO technical papers in marine science: Algorithms for computation of fundamental properties of seawater. Unesco Technical Papers in Marine Science Rep. 44, 58 pp.

  • Fu, L.-L., and C. Ubelmann, 2014: On the transition from profile altimeter to swath altimeter for observing global ocean surface topography. J. Atmos. Oceanic Technol., 31, 560568, https://doi.org/10.1175/JTECH-D-13-00109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., and J. Loder, 1981: Dynamical aspects of shallow sea fronts. Philos. Trans. Roy. Soc. London, 302A, 563581, https://doi.org/10.1098/rsta.1981.0183.

    • Search Google Scholar
    • Export Citation
  • Gaultier, L., C. Ubelmann, and L.-L. Fu, 2016: The challenge of using future SWOT data for oceanic field reconstruction. J. Atmos. Oceanic Technol., 33, 119126, https://doi.org/10.1175/JTECH-D-15-0160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giordani, H., L. Prieur, and G. Caniaux, 2006: Advanced insights into sources of vertical velocity in the ocean. Ocean Dyn., 56, 513524, https://doi.org/10.1007/s10236-005-0050-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • González-Haro, C., and J. Isern-Fontanet, 2014: Global ocean current reconstruction from altimetric and microwave SST measurements. J. Geophys. Res. Oceans, 119, 33783391, https://doi.org/10.1002/2013JC009728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., R. T. Pierrehumbert, S. T. Garner, and K. L. Swanson, 1995: Surface quasigeostrophic dynamics. J. Fluid Mech., 282, 120, https://doi.org/10.1017/S0022112095000012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1975: The geostrophic momentum approximation and the semi-geostrophic equations. J. Atmos. Sci., 32, 233242, https://doi.org/10.1175/1520-0469(1975)032<0233:TGMAAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., I. Draghici, and H. C. Davies, 1978: A new look at the ω-equation. Quart. J. Roy. Meteor. Soc., 104, 3138, https://doi.org/10.1002/qj.49710443903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isern-Fontanet, J., B. Chapron, G. Lapeyre, and P. Klein, 2006: Potential use of microwave sea surface temperatures for the estimation of ocean currents. Geophys. Res. Lett., 33, L24608, https://doi.org/10.1029/2006GL027801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isern-Fontanet, J., G. Lapeyre, P. Klein, B. Chapron, and M. W. Hecht, 2008: Three dimensional reconstruction of oceanic mesoscale currents from surface information. J. Geophys. Res., 113, C09005, https://doi.org/10.1029/2007JC004692.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isern-Fontanet, J., M. Shinde, and C. González-Haro, 2014: On the transfer function between surface fields and the geostrophic stream function in the Mediterranean Sea. J. Phys. Oceanogr., 44, 14061423, https://doi.org/10.1175/JPO-D-13-0186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isern-Fontanet, J., J. Ballabrera-Poy, A. Turiel, and E. García-Ladona, 2017: Remote sensing of ocean surface currents: A review of what is being observed and what is being assimilated. Nonlinear Processes Geophys., 24, 613643, https://doi.org/10.5194/npg-24-613-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., and T. J. McDougall, 1995: Minimal adjustment of hydrostatic profiles to achieve static stability. J. Atmos. Oceanic Technol., 12, 381389, https://doi.org/10.1175/1520-0426(1995)012<0381:MAOHPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., B. L. Hua, G. Lapeyre X. Capet, S. L. Gentil, and H. Sasaki, 2008: Upper ocean turbulence from high-resolution 3D simulations. J. Phys. Oceanogr., 38, 17481763, https://doi.org/10.1175/2007JPO3773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., J. Isern-Fontanet, G. Lapeyre, G. Roullet, E. Danioux, B. Chapron, S. Le Gentil, and H. Sasaki, 2009: Diagnosis of vertical velocities in the upper ocean from high resolution sea surface height. Geophys. Res. Lett., 36, L12603, https://doi.org/10.1029/2009GL038359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komori, N., K. Takahashi, K. Komine, T. Motoi, X. Zhang, and G. Sagawa, 2005: Description of sea-ice component of coupled Ocean Sea-Ice Model for the Earth Simulator (OIFES). J. Earth Simul., 4, 3145.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., 2012: Surface quasigeostrophic solutions and baroclinic modes with exponential stratification. J. Phys. Oceanogr., 42, 569580, https://doi.org/10.1175/JPO-D-11-0111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., 2017: The prevalence of oceanic surface modes. Geophys. Res. Lett., 44, 11 09711 105, https://doi.org/10.1002/2017GL075430.

  • LaCasce, J. H., and A. Mahadevan, 2006: Estimating subsurface horizontal and vertical velocities from sea surface temperature. J. Mar. Res., 64, 695721, https://doi.org/10.1357/002224006779367267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., and J. Wang, 2015: Estimating subsurface velocities from surface fields with idealized stratification. J. Phys. Oceanogr., 45, 24242435, https://doi.org/10.1175/JPO-D-14-0206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., 2009: What vertical mode does the altimeter reflect? On the decomposition in baroclinic modes and on a surface-trapped mode. J. Phys. Oceanogr., 39, 28572874, https://doi.org/10.1175/2009JPO3968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., 2017: Surface quasi-geostrophy. Fluids, 2, 7, https://doi.org/10.3390/fluids2010007.

  • Lapeyre, G., and P. Klein, 2006: Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory. J. Phys. Oceanogr., 36, 165176, https://doi.org/10.1175/JPO2840.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., J. Wang, and L.-L. Fu, 2019: An observing system simulation experiment for ocean state estimation to assess the performance of the SWOT mission: Part I-A twin experiment. J. Geophys. Res. Oceans, 124, 48384855, https://doi.org/10.1029/2018JC014869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, L., S. Peng, J. Wang, and R. X. Huang, 2014: Retrieving density and velocity fields of the ocean’s interior from surface data. J. Geophys. Res. Oceans, 119, 85128529, https://doi.org/10.1002/2014JC010221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, L., S. Peng, and R. X. Huang, 2017: Reconstruction of ocean’s interior from observed sea surface information. J. Geophys. Res. Oceans, 122, 10421056, https://doi.org/10.1002/2016JC011927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, L., H. Xue, and H. Sasaki, 2019: Reconstructing the ocean interior from high-resolution sea surface information. J. Phys. Oceanogr., 49, 32453262, https://doi.org/10.1175/JPO-D-19-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., and et al. , 2004: A fifty-year eddy-resolving simulation of the world ocean: Preliminary outcomes of OFES (OGCM for the Earth Simulator). J. Earth Simul., 1, 3556.

    • Search Google Scholar
    • Export Citation
  • Mensa, J. A., Z. Garraffo, A. Griffa, T. M. Ozgokmen, A. Haza, and M. Veneziani, 2013: Seasonality of the submesoscale dynamics in the Gulf Stream region. Ocean Dyn., 63, 923941, https://doi.org/10.1007/s10236-013-0633-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrow, R., and et al. , 2019: Global observations of fine-scale ocean surface topography with the Surface Water and Ocean Topography (SWOT) mission. Front. Mar. Sci., 6, 232, https://doi.org/10.3389/fmars.2019.00232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagai, T., A. Tandon, and D. L. Rudnick, 2006: Two-dimensional ageostrophic secondary circulation at ocean fronts due to vertical mixing and large-scale deformation. J. Geophys. Res., 111, C09038, https://doi.org/10.1029/2005JC002964.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagai, T., A. Tandon, N. Gruber, and J. C. McWilliams, 2008: Biological and physical impacts of ageostrophic frontal circulations driven by confluent flow and vertical mixing. Dyn. Atmos. Oceans, 45, 229251, https://doi.org/10.1016/j.dynatmoce.2007.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y., and H. J. Kim, 1999: Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface process. J. Geophys. Res., 104, 15 62115 634, https://doi.org/10.1029/1999JC900068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nonaka, M., Y. Sasai, H. Sasaki, B. Taguchi, and H. Nakamura, 2016: How potentially predictable are midlatitude ocean currents? Sci. Rep., 6, 20153, https://doi.org/10.1038/srep20153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onogi, K., and et al. , 2007: The JRA-25 reanalysis. J. Meteor. Soc. Japan, 85, 369432, https://doi.org/10.2151/jmsj.85.369.

  • Pallàs-Sanz, E., and A. Viúdez, 2005: Diagnosing mesoscale vertical motion from horizontal velocity and density data. J. Phys. Oceanogr., 35, 17441762, https://doi.org/10.1175/JPO2784.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer, 728 pp.

    • Crossref
    • Export Citation
  • Pollard, R. T., and L. A. Regier, 1992: Vorticity and vertical circulation at an ocean front. J. Phys. Oceanogr., 22, 609625, https://doi.org/10.1175/1520-0485(1992)022<0609:VAVCAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ponte, A. L., and P. Klein, 2013: Reconstruction of the upper ocean 3D dynamics from high resolution sea surface height. Ocean Dyn., 63, 777791, https://doi.org/10.1007/s10236-013-0611-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ponte, A. L., P. Klein, X. Capet, P.-Y. Le Traon, B. Chapron, and P. Lherminier, 2013: Diagnosing surface mixed layer dynamics from high-resolution satellite observations: Numerical insights. J. Phys. Oceanogr., 43, 13451355, https://doi.org/10.1175/JPO-D-12-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., and R. R. Schudlich, 1987: Wind-driven ocean currents and Ekman transport. Science, 238, 15341538, https://doi.org/10.1126/science.238.4833.1534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, P. Klein, H. Sasaki, and Y. Sasai, 2014: Seasonal mesoscale and submesoscale eddy variability along the North Pacific Subtropical Countercurrent. J. Phys. Oceanogr., 44, 30793098, https://doi.org/10.1175/JPO-D-14-0071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, P. Klein, C. Ubelmann, L.-L. Fu, and H. Sasaki, 2016: Reconstructability of three-dimensional upper-ocean circulation from SWOT sea surface height measurements. J. Phys. Oceanogr., 46, 947963, https://doi.org/10.1175/JPO-D-15-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, P. Klein, H. Torres, J. Wang, L.-L. Fu, and D. Menemenlis, 2020: Reconstructing upper-ocean vertical velocity field from sea surface height in the presence of unbalanced motion. J. Phys. Oceanogr., 50, 5579, https://doi.org/10.1175/JPO-D-19-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ragone, F., and G. Badin, 2016: A study of surface semi-geostrophic turbulence: Freely decaying dynamics. J. Fluid Mech., 792, 740774, https://doi.org/10.1017/jfm.2016.116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rousselet, L., and et al. , 2019: Vertical motions and their effects on a biogeochemical tracer in a cyclonic structure finely observed in the Ligurian Sea. J. Geophys. Res. Oceans, 124, 35613574, https://doi.org/10.1029/2018JC014392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., 1996: Intensive surveys of the Azores front: 2. Inferring the geostrophic and vertical velocity fields. J. Geophys. Res., 101, 16 29116 303, https://doi.org/10.1029/96JC01144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, H., and P. Klein, 2012: SSH wavenumber spectra in the North Pacific from a high-resolution realistic simulation. J. Phys. Oceanogr., 42, 12331241, https://doi.org/10.1175/JPO-D-11-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, H., M. Nonaka, Y. Masumoto, Y. Sasai, H. Uehara, and H. Sakuma, 2008: An eddy-resolving hindcast simulation of the quasiglobal ocean from 1950 to 2003 on the Earth Simulator. High Resolution Numerical Modelling of the Atmosphere and Ocean, W. Ohfuchi and K. Hamilton, Eds., Springer, 157–185.

    • Crossref
    • Export Citation
  • Sasaki, H., P. Klein, B. Qiu, and Y. Sasai, 2014: Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere. Nat. Commun., 5, 5636, https://doi.org/10.1038/ncomms6636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, H., P. Klein, Y. Sasai, and B. Qiu, 2017: Regionality and seasonality of submesoscale and mesoscale turbulence in the North Pacific Ocean. Ocean Dyn., 67, 11951216, https://doi.org/10.1007/s10236-017-1083-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schudlich, R. R., and J. F. Price, 1998: Observation of seasonal variation in the Ekman layer. J. Phys. Oceanogr., 28, 11871204, https://doi.org/10.1175/1520-0485(1998)028<1187:OOSVIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shrira, V. I., and R. B. Almelah, 2020: Upper-ocean Ekman current dynamics: A new perspective. J. Fluid Mech., 887, A24, https://doi.org/10.1017/jfm.2019.1059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. S., and J. Vanneste, 2013: A surface-aware projection basis for quasigeostrophic flow. J. Phys. Oceanogr., 43, 548562, https://doi.org/10.1175/JPO-D-12-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1997: Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements. J. Phys. Oceanogr., 27, 17431769, https://doi.org/10.1175/1520-0485(1997)027<1743:GCOOVE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, Z., J. Wang, P. Klein, A. F. Thompson, and D. Menemenlis, 2018: Ocean submesoscales as a key component of the global heat budget. Nat. Commun., 9, 775, https://doi.org/10.1038/s41467-018-02983-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., and C. M. Lee, 2005: Intensification of ocean fronts by down-front winds. J. Phys. Oceanogr., 35, 10861102, https://doi.org/10.1175/JPO2737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, L., 2000: Ekman layers and two-dimensional frontogenesis in the upper ocean. J. Geophys. Res., 105, 64376451, https://doi.org/10.1029/1999JC900336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres, H. S., P. Klein, D. Menemenlis, B. Qiu, Z. Su, J. Wang, S. Chen, and L.-L. Fu, 2018: Partitioning ocean motions into balanced motions and internal gravity waves: A modeling study in anticipation of future space missions. J. Geophys. Res. Oceans, 123, 80848105, https://doi.org/10.1029/2018JC014438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., and L.-L. Fu, 2019: On the long-wavelength validation of the SWOT KaRIn measurement. J. Atmos. Oceanic Technol., 36, 843848, https://doi.org/10.1175/JTECH-D-18-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., G. Flierl, J. LaCasce, J. McClean, and A. Mahadevan, 2013: Reconstructing the ocean’s interior from surface data. J. Phys. Oceanogr., 43, 16111626, https://doi.org/10.1175/JPO-D-12-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., L.-L. Fu, B. Qiu, D. Menemenlis, T. Farrar, Y. Chao, A. Thompson, and M. Flexas, 2018: An observing system simulation experiment for the calibration and validation of the Surface Water Ocean Topography sea surface height measurement using in-situ platforms. J. Atmos. Oceanic Technol., 35, 281297, https://doi.org/10.1175/JTECH-D-17-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., L.-L. Fu, H. Torres, S. Chen, B. Qiu, and D. Menemenlis, 2019: On the spatial scales to be resolved by the surface water and ocean topography Ka-band radar interferometer. J. Atmos. Oceanic Technol., 36, 8799, https://doi.org/10.1175/JTECH-D-18-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wortham, C., and C. Wunsch, 2014: A multi-dimensional spectral description of ocean variability. J. Phys. Oceanogr., 44, 944966, https://doi.org/10.1175/JPO-D-13-0113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, L., E. Pallàs-Sanz, Q. Zheng, S. Zhang, X. Zong, X. Yi, and M. Li, 2017: Diagnosis of 3D vertical circulation in the upwelling and frontal zones east of Hainan Island, China. J. Phys. Oceanogr., 47, 755774, https://doi.org/10.1175/JPO-D-16-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, H., H. Wang, R. Zhang, J. Chen, S. Bao, and G. Wang, 2020: A dynamical-statistical approach to retrieve the ocean interior structure from surface data: SQG-mEOF-R. J. Geophys. Res. Oceans, 125, e2019JC015840, https://doi.org/10.1029/2019JC015840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., Z. Jing, B. Sun, L. Wu, B. Qiu, P. Chang, and S. Ramachandran, 2021: On the upper-ocean vertical eddy heat transport in the Kuroshio extension. Part I: Variability and dynamics. J. Phys. Oceanogr., 51, 229246, https://doi.org/10.1175/JPO-D-20-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 147 147 102
Full Text Views 79 79 63
PDF Downloads 101 101 79

Diagnosing Subsurface Vertical Velocities from High-Resolution Sea Surface Fields

View More View Less
  • 1 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
  • | 2 Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
  • | 3 School of Marine Sciences, University of Maine, Orono, Maine
  • | 4 Application Laboratory, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
© Get Permissions
Restricted access

Abstract

Using the extended “interior + surface quasigeostrophic” method from the 2019 study by Liu et al. (hereafter L19), subsurface density and horizontal velocities can be reconstructed from sea surface buoyancy and surface height. This study explores the potential of L19 for diagnosing the upper-ocean vertical velocity w field from high-resolution surface information, employing the 1/30° horizontal resolution OFES model output. Specifically, we employ the L19-reconstructed density and horizontal velocity fields in a diabatic version of the omega equation that incorporates a simplified parameterization for turbulent vertical mixing. The w diagnosis is evaluated against OFES output in the Kuroshio Extension region of the North Pacific, and the result indicates that the L19 method constitutes an effective framework. Statistically, the OFES-simulated and L19-diagnosed w fields have a 2-yr-averaged spatial correlation of 0.42–0.51 within the mixed layer and 0.51–0.67 throughout the 1000-m upper ocean below the mixed layer. Including the diabatic turbulent mixing effect has improved the w diagnoses inside the mixed layer, particularly for the cold-season days with the largest correlation improvement reaching 0.31. Our encouraging results suggest that the L19 method can be applied to the high-resolution sea surface height data from the forthcoming Surface Water and Ocean Topography (SWOT) satellite mission for reconstructing 3D hydrodynamic conditions of the upper ocean.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Huijie Xue, huijiexue@scsio.ac.cn

Abstract

Using the extended “interior + surface quasigeostrophic” method from the 2019 study by Liu et al. (hereafter L19), subsurface density and horizontal velocities can be reconstructed from sea surface buoyancy and surface height. This study explores the potential of L19 for diagnosing the upper-ocean vertical velocity w field from high-resolution surface information, employing the 1/30° horizontal resolution OFES model output. Specifically, we employ the L19-reconstructed density and horizontal velocity fields in a diabatic version of the omega equation that incorporates a simplified parameterization for turbulent vertical mixing. The w diagnosis is evaluated against OFES output in the Kuroshio Extension region of the North Pacific, and the result indicates that the L19 method constitutes an effective framework. Statistically, the OFES-simulated and L19-diagnosed w fields have a 2-yr-averaged spatial correlation of 0.42–0.51 within the mixed layer and 0.51–0.67 throughout the 1000-m upper ocean below the mixed layer. Including the diabatic turbulent mixing effect has improved the w diagnoses inside the mixed layer, particularly for the cold-season days with the largest correlation improvement reaching 0.31. Our encouraging results suggest that the L19 method can be applied to the high-resolution sea surface height data from the forthcoming Surface Water and Ocean Topography (SWOT) satellite mission for reconstructing 3D hydrodynamic conditions of the upper ocean.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Huijie Xue, huijiexue@scsio.ac.cn
Save