Near-Inertial Waves and Turbulence Driven by the Growth of Swell

Gregory L. Wagner Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Gregory L. Wagner in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5317-2445
,
Gregory P. Chini Integrated Applied Mathematics and Mechanical Engineering, University of New Hampshire, Durham, New Hampshire

Search for other papers by Gregory P. Chini in
Current site
Google Scholar
PubMed
Close
,
Ali Ramadhan Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Ali Ramadhan in
Current site
Google Scholar
PubMed
Close
,
Basile Gallet Service de Physique de l’Etat Condense, Commissariat á l’Energie Atomique Saclay, CNRS UMR 3680, Universitè Paris-Saclay, Saint-Aubin, France

Search for other papers by Basile Gallet in
Current site
Google Scholar
PubMed
Close
, and
Raffaele Ferrari Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Raffaele Ferrari in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Between 5% and 25% of the total momentum transferred between the atmosphere and ocean is transmitted via the growth of long surface gravity waves called “swell.” In this paper, we use large-eddy simulations to show that swell-transmitted momentum excites near-inertial waves and drives turbulent mixing that deepens a rotating, stratified, turbulent ocean surface boundary layer. We find that swell-transmitted currents are less effective at producing turbulence and mixing the boundary layer than currents driven by an effective surface stress. Overall, however, the differences between swell-driven and surface-stress-driven boundary layers are relatively minor. In consequence, our results corroborate assumptions made in Earth system models that neglect the vertical structure of swell-transmitted momentum fluxes and instead parameterize all air–sea momentum transfer processes with an effective surface stress.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gregory L. Wagner, wagner.greg@gmail.com

Abstract

Between 5% and 25% of the total momentum transferred between the atmosphere and ocean is transmitted via the growth of long surface gravity waves called “swell.” In this paper, we use large-eddy simulations to show that swell-transmitted momentum excites near-inertial waves and drives turbulent mixing that deepens a rotating, stratified, turbulent ocean surface boundary layer. We find that swell-transmitted currents are less effective at producing turbulence and mixing the boundary layer than currents driven by an effective surface stress. Overall, however, the differences between swell-driven and surface-stress-driven boundary layers are relatively minor. In consequence, our results corroborate assumptions made in Earth system models that neglect the vertical structure of swell-transmitted momentum fluxes and instead parameterize all air–sea momentum transfer processes with an effective surface stress.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gregory L. Wagner, wagner.greg@gmail.com
Save
  • Abkar, M., H. J. Bae, and P. Moin, 2016: Minimum-dissipation scalar transport model for large-eddy simulation of turbulent flows. Phys. Rev. Fluids, 1, 041701, https://doi.org/10.1103/PhysRevFluids.1.041701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. McIntyre, 1978: An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech., 89, 609646, https://doi.org/10.1017/S0022112078002773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Besard, T., C. Foket, and B. De Sutter, 2018: Effective extensible programming: Unleashing Julia on GPUs. IEEE Trans. Parallel Distrib. Syst., 30, 827841, https://doi.org/10.1109/TPDS.2018.2872064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bezanson, J., S. Karpinski, V. B. Shah, and A. Edelman, 2012: Julia: A fast dynamic language for technical computing. arXiv, 27 pp., https://arxiv.org/abs/1209.5145.

    • Search Google Scholar
    • Export Citation
  • Bühler, O., 2014: Waves and Mean Flows. 2nd ed. Cambridge University Press, 374 pp.

  • Craik, A. D., and S. Leibovich, 1976: A rational model for Langmuir circulations. J. Fluid Mech., 73, 401426, https://doi.org/10.1017/S0022112076001420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., J. Thomson, A. Shcherbina, R. Harcourt, M. Cronin, M. Hemer, and B. Fox-Kemper, 2014: Quantifying upper ocean turbulence driven by surface waves. Geophys. Res. Lett., 41, 102107, https://doi.org/10.1002/2013GL058193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., I. Ginis, and T. Hara, 2009: The effect of wind–wave–current interaction on air–sea momentum fluxes and ocean response in tropical cyclones. J. Phys. Oceanogr., 39, 10191034, https://doi.org/10.1175/2008JPO4066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grare, L., W. L. Peirson, H. Branger, J. W. Walker, J.-P. Giovanangeli, and V. Makin, 2013: Growth and dissipation of wind-forced, deep-water waves. J. Fluid Mech., 722, 550, https://doi.org/10.1017/jfm.2013.88.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., and E. A. D’Asaro, 2008: Large-eddy simulation of Langmuir turbulence in pure wind seas. J. Phys. Oceanogr., 38, 15421562, https://doi.org/10.1175/2007JPO3842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1970: Wave-driven inertial oscillations. Geophys. Astrophys. Fluid Dyn., 1, 463502, https://doi.org/10.1080/03091927009365783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holm, D. D., 1996: The ideal Craik-Leibovich equations. Physica D, 98, 415441, https://doi.org/10.1016/0167-2789(96)00105-4.

  • Huang, N. E., 1979: On surface drift currents in the ocean. J. Fluid Mech., 91, 191208, https://doi.org/10.1017/S0022112079000112.

  • Kukulka, T., A. J. Plueddemann, J. H. Trowbridge, and P. P. Sullivan, 2010: Rapid mixed layer deepening by the combination of Langmuir and shear instabilities: A case study. J. Phys. Oceanogr., 40, 23812400, https://doi.org/10.1175/2010JPO4403.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., E. G. Patton, A. K. DuVivier, P. P. Sullivan, and L. Romero, 2019: Similarity theory in the surface layer of large-eddy simulations of the wind-, wave-, and buoyancy-forced southern ocean. J. Phys. Oceanogr., 49, 21652187, https://doi.org/10.1175/JPO-D-18-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leibovich, S., 1977: On the evolution of the system of wind drift currents and Langmuir circulations in the ocean. Part I. Theory and averaged current. J. Fluid Mech., 79, 715743, https://doi.org/10.1017/S002211207700041X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leibovich, S., 1980: On wave-current interaction theories of Langmuir circulations. J. Fluid Mech., 99, 715724, https://doi.org/10.1017/S0022112080000857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1953: Mass transport in water waves. Philos. Trans. Roy. Soc. London, 245A, 535581, https://doi.org/10.1098/rsta.1953.0006.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1969: A nonlinear mechanism for the generation of sea waves. Proc. Roy. Soc. London, 311A, 371389, https://doi.org/10.1098/rspa.1969.0123.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1986: Eulerian and Lagrangian aspects of surface waves. J. Fluid Mech., 173, 683707, https://doi.org/10.1017/S0022112086001325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mcintyre, M., 1981: On the ‘wave momentum’ myth. J. Fluid Mech., 106, 331347, https://doi.org/10.1017/S0022112081001626.

  • McWilliams, J. C., P. P. Sullivan, and C.-H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130, https://doi.org/10.1017/S0022112096004375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melville, W. K., 1996: The role of surface-wave breaking in air-sea interaction. Annu. Rev. Fluid Mech., 28, 279321, https://doi.org/10.1146/annurev.fl.28.010196.001431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y., H. S. Min, and S. Raasch, 2004: Large-eddy simulation of the ocean mixed layer: The effects of wave breaking and Langmuir circulation. J. Phys. Oceanogr., 34, 720735, https://doi.org/10.1175/1520-0485(2004)034<0720:LESOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearson, B., 2018: Turbulence-induced anti-Stokes flow and the resulting limitations of large-eddy simulation. J. Phys. Oceanogr., 48, 117122, https://doi.org/10.1175/JPO-D-17-0208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, O., 1985: Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech., 156, 505531, https://doi.org/10.1017/S0022112085002221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., 1970: Surface waves with rotation: An exact solution. J. Geophys. Res., 75, 58955898, https://doi.org/10.1029/JC075i030p05895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polton, J. A., and S. E. Belcher, 2007: Langmuir turbulence and deeply penetrating jets in an unstratified mixed layer. J. Geophys. Res., 112, C09020, https://doi.org/10.1029/2007JC004205.

    • Search Google Scholar
    • Export Citation
  • Rozema, W., H. J. Bae, P. Moin, and R. Verstappen, 2015: Minimum-dissipation models for large-eddy simulation. Phys. Fluids, 27, 085107, https://doi.org/10.1063/1.4928700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumann, U., and R. A. Sweet, 1988: Fast Fourier transforms for direct solution of Poisson’s equation with staggered boundary conditions. J. Comput. Phys., 75, 123137, https://doi.org/10.1016/0021-9991(88)90102-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seshasayanan, K., and B. Gallet, 2019: Surface gravity waves propagating in a rotating frame: The Ekman-Stokes instability. Phys. Rev. Fluids, 4, 104802, https://doi.org/10.1103/PhysRevFluids.4.104802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., and D. W. Denbo, 1995: An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. J. Geophys. Res., 100, 85018522, https://doi.org/10.1029/94JC03202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stokes, G. G., 1847: On the theory of oscillatory waves. Trans. Cambridge Philos. Soc., 8, 441455.

  • Sullivan, P. P., and J. C. McWilliams, 2010: Dynamics of winds and currents coupled to surface waves. Annu. Rev. Fluid Mech., 42, 1942, https://doi.org/10.1146/annurev-fluid-121108-145541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., L. Romero, J. C. McWilliams, and W. K. Melville, 2012: Transient evolution of Langmuir turbulence in ocean boundary layers driven by hurricane winds and waves. J. Phys. Oceanogr., 42, 19591980, https://doi.org/10.1175/JPO-D-12-025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suzuki, N., and B. Fox-Kemper, 2016: Understanding Stokes forces in the wave-averaged equations. J. Geophys. Res. Oceans, 121, 35793596, https://doi.org/10.1002/2015JC011566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ursell, F., and G. Deacon, 1950: On the theoretical form of ocean swell on a rotating earth. Geophys. J. Int., 6, 18, https://doi.org/10.1111/j.1365-246X.1950.tb02968.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verstappen, R., 2018: How much eddy dissipation is needed to counterbalance the nonlinear production of small, unresolved scales in a large-eddy simulation of turbulence? Comput. Fluids, 176, 276284, https://doi.org/10.1016/j.compfluid.2016.12.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vreugdenhil, C. A., and J. R. Taylor, 2018: Large-eddy simulations of stratified plane Couette flow using the anisotropic minimum-dissipation model. Phys. Fluids, 30, 085104, https://doi.org/10.1063/1.5037039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, G. L., 2016: On the coupled evolution of oceanic internal waves and quasi-geostrophic flow. Ph.D. thesis, University of California, San Diego, 216 pp.

  • Yang, D., B. Chen, M. Chamecki, and C. Meneveau, 2015: Oil plumes and dispersion in Langmuir, upper-ocean turbulence: Large-eddy simulations and K-profile parameterization. J. Geophys. Res. Oceans, 120, 47294759, https://doi.org/10.1002/2014JC010542.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 646 0 0
Full Text Views 865 351 26
PDF Downloads 945 348 31