Abstract
We present a new method to estimate second-order horizontal velocity structure functions, as well as their Helmholtz decomposition into rotational and divergent components, from sparse data collected along Lagrangian observations. The novelty compared to existing methods is that we allow for anisotropic statistics in the velocity field and also in the collection of the Lagrangian data. Specifically, we assume only stationarity and spatial homogeneity of the data and that the cross covariance between the rotational and divergent flow components is either zero or a function of the separation distance only. No further assumptions are made and the anisotropy of the underlying flow components can be arbitrarily strong. We demonstrate our new method by testing it against synthetic data and applying it to the Lagrangian Submesoscale Experiment (LASER) dataset. We also identify an improved statistical angle-weighting technique that generally increases the accuracy of structure function estimations in the presence of anisotropy.
Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-20-0199.s1.
Current affiliation: Department of Physics, University of Toronto, Toronto, Ontario, Canada.
© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).