Modeling Water-Mass Distributions in the Modern and LGM Ocean: Circulation Change and Isopycnal and Diapycnal Mixing

C. S. Jones Lamont–Doherty Earth Observatory, Palisades, New York

Search for other papers by C. S. Jones in
Current site
Google Scholar
PubMed
Close
and
Ryan P. Abernathey Lamont–Doherty Earth Observatory, Palisades, New York

Search for other papers by Ryan P. Abernathey in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Paleoproxy observations suggest that deep-ocean water-mass distributions were different at the Last Glacial Maximum than they are today. However, even modern deep-ocean water-mass distributions are not completely explained by observations of the modern ocean circulation. This paper investigates two processes that influence deep-ocean water-mass distributions: 1) interior downwelling caused by vertical mixing that increases in the downward direction and 2) isopycnal mixing. Passive tracers are used to assess how changes in the circulation and in the isopycnal-mixing coefficient impact deep-ocean water-mass distributions in an idealized two-basin model. We compare two circulations, one in which the upper cell of the overturning reaches to 4000-m depth and one in which it shoals to 2500-m depth. Previous work suggests that in the latter case the upper cell and the abyssal cell of the overturning are separate structures. Nonetheless, high concentrations of North Atlantic Water (NAW) are found in our model’s abyssal cell: these tracers are advected into the abyssal cell by interior downwelling caused by our vertical mixing profile, which increases in the downward direction. Further experiments suggest that the NAW concentration in the deep South Atlantic Ocean and in the deep Pacific Ocean is influenced by the isopycnal-mixing coefficient in the top 2000 m of the Southern Ocean. Both the strength and the vertical profile of isopycnal mixing are important for setting deep-ocean tracer concentrations. A 1D advection–diffusion model elucidates how NAW concentration depends on advective and diffusive processes.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-20-0204.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: C. Spencer Jones, spencerj@ldeo.columbia.edu

Abstract

Paleoproxy observations suggest that deep-ocean water-mass distributions were different at the Last Glacial Maximum than they are today. However, even modern deep-ocean water-mass distributions are not completely explained by observations of the modern ocean circulation. This paper investigates two processes that influence deep-ocean water-mass distributions: 1) interior downwelling caused by vertical mixing that increases in the downward direction and 2) isopycnal mixing. Passive tracers are used to assess how changes in the circulation and in the isopycnal-mixing coefficient impact deep-ocean water-mass distributions in an idealized two-basin model. We compare two circulations, one in which the upper cell of the overturning reaches to 4000-m depth and one in which it shoals to 2500-m depth. Previous work suggests that in the latter case the upper cell and the abyssal cell of the overturning are separate structures. Nonetheless, high concentrations of North Atlantic Water (NAW) are found in our model’s abyssal cell: these tracers are advected into the abyssal cell by interior downwelling caused by our vertical mixing profile, which increases in the downward direction. Further experiments suggest that the NAW concentration in the deep South Atlantic Ocean and in the deep Pacific Ocean is influenced by the isopycnal-mixing coefficient in the top 2000 m of the Southern Ocean. Both the strength and the vertical profile of isopycnal mixing are important for setting deep-ocean tracer concentrations. A 1D advection–diffusion model elucidates how NAW concentration depends on advective and diffusive processes.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-20-0204.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: C. Spencer Jones, spencerj@ldeo.columbia.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.38 MB)
Save
  • Abernathey, R., and D. Ferreira, 2015: Southern Ocean isopycnal mixing and ventilation changes driven by winds. Geophys. Res. Lett., 42, 10 35710 365, https://doi.org/10.1002/2015GL066238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adkins, J. F., 2013: The role of deep ocean circulation in setting glacial climates. Paleoceanography, 28, 539561, https://doi.org/10.1002/palo.20046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adkins, J. F., K. McIntyre, and D. P. Schrag, 2002: The salinity, temperature, and δ18O of the glacial deep ocean. Science, 298, 17691773, https://doi.org/10.1126/science.1076252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armi, L., and H. Stommel, 1983: Four views of a portion of the North Atlantic subtropical gyre. J. Phys. Oceanogr., 13, 828857, https://doi.org/10.1175/1520-0485(1983)013<0828:FVOAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burke, A., A. L. Stewart, J. F. Adkins, R. Ferrari, M. F. Jansen, and A. F. Thompson, 2015: The glacial mid-depth radiocarbon bulge and its implications for the overturning circulation. Paleoceanography, 30, 10211039, https://doi.org/10.1002/2015PA002778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cole, S. T., C. Wortham, E. Kunze, and W. B. Owens, 2015: Eddy stirring and horizontal diffusivity from Argo float observations: Geographic and depth variability. Geophys. Res. Lett., 42, 39893997, https://doi.org/10.1002/2015GL063827.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, W. B., and D. W. Oppo, 2005: Glacial water mass geometry and the distribution of δ13C of σCO2 in the western Atlantic Ocean. Paleoceanography, 20, PA1017, https://doi.org/10.1029/2004PA001021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., M. F. Jansen, J. F. Adkins, A. Burke, A. L. Stewart, and A. F. Thompson, 2014: Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl. Acad. Sci. USA, 111, 87538758, https://doi.org/10.1073/pnas.1323922111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., A. Mashayek, T. J. McDougall, M. Nikurashin, and J.-M. Campin, 2016: Turning ocean mixing upside down. J. Phys. Oceanogr., 46, 22392261, https://doi.org/10.1175/JPO-D-15-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, T. Ito, and D. McGee, 2018: Linking glacial-interglacial states to multiple equilibria of climate. Geophys. Res. Lett., 45, 91609170, https://doi.org/10.1029/2018GL077019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garabato, A. C. N., D. P. Stevens, A. J. Watson, and W. Roether, 2007: Short-circuiting of the overturning circulation in the Antarctic Circumpolar Current. Nature, 447, 194197, https://doi.org/10.1038/nature05832.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebbie, G., 2014: How much did glacial North Atlantic water shoal? Paleoceanography, 29, 190209, https://doi.org/10.1002/2013PA002557.

  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., M.-A. Pradal, and R. Abernathey, 2015: Isopycnal mixing by mesoscale eddies significantly impacts oceanic anthropogenic carbon uptake. Geophys. Res. Lett., 42, 42494255, https://doi.org/10.1002/2015GL064100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gottschalk, J., and Coauthors, 2019: Mechanisms of millennial-scale atmospheric co2 change in numerical model simulations. Quat. Sci. Rev., 220, 3074, https://doi.org/10.1016/j.quascirev.2019.05.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groeskamp, S., B. M. Sloyan, J. D. Zika, and T. J. McDougall, 2017: Mixing inferred from an ocean climatology and surface fluxes. J. Phys. Oceanogr., 47, 667687, https://doi.org/10.1175/JPO-D-16-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howe, J. N., A. M. Piotrowski, T. L. Noble, S. Mulitza, C. M. Chiessi, and G. Bayon, 2016: North Atlantic deep water production during the Last Glacial Maximum. Nat. Commun., 7, 11765, https://doi.org/10.1038/ncomms11765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoyer, S., and J. J. Hamman, 2017: Xarray: N-D labeled arrays and datasets in Python. J. Open Res. Software, 5, 10, https://doi.org/10.5334/jors.148.

  • Jansen, M. F., and L.-P. Nadeau, 2016: The effect of southern ocean surface buoyancy loss on the deep-ocean circulation and stratification. J. Phys. Oceanogr., 46, 34553470, https://doi.org/10.1175/JPO-D-16-0084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., 2008: Quantifying Antarctic Bottom Water and North Atlantic Deep Water volumes. J. Geophys. Res., 113, C05027, https://doi.org/10.1029/2007JC004477.

    • Search Google Scholar
    • Export Citation
  • Jones, C., and P. Cessi, 2017: Size matters: Another reason why the Atlantic is saltier than the Pacific. J. Phys. Oceanogr., 47, 28432859, https://doi.org/10.1175/JPO-D-17-0075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., and R. P. Abernathey, 2019: Isopycnal mixing controls deep ocean ventilation. Geophys. Res. Lett., 46, 13 14413 151, https://doi.org/10.1029/2019GL085208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamenkovich, I., Z. Garraffo, R. Pennel, and R. A. Fine, 2017: Importance of mesoscale eddies and mean circulation in ventilation of the Southern Ocean. J. Geophys. Res. Oceans, 122, 27242741, https://doi.org/10.1002/2016JC012292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., R. R. Schneider, S. Mulitza, and P. J. Müller, 2003: Reconstruction of se trade-wind intensity based on sea-surface temperature gradients in the southeast Atlantic over the last 25 kyr. Geophys. Res. Lett., 30, 2144, https://doi.org/10.1029/2003GL017557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohfeld, K., R. Graham, A. De Boer, L. Sime, E. Wolff, C. Le Quéré, and L. Bopp, 2013: Southern hemisphere westerly wind changes during the Last Glacial Maximum: Paleo-data synthesis. Quat. Sci. Rev., 68, 7695, https://doi.org/10.1016/j.quascirev.2013.01.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., 2017a: The internal-wave-driven meridional overturning circulation. J. Phys. Oceanogr., 47, 26732689, https://doi.org/10.1175/JPO-D-16-0142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., 2017b: Internal-wave-driven mixing: Global geography and budgets. J. Phys. Oceanogr., 47, 13251345, https://doi.org/10.1175/JPO-D-16-0141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1998: Mixing of a tracer in the pycnocline. J. Geophys. Res., 103, 21 49921 529, https://doi.org/10.1029/98JC01738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562, https://doi.org/10.1175/JPO3130.1.

  • Lund, D., J. Adkins, and R. Ferrari, 2011: Abyssal Atlantic circulation during the Last Glacial Maximum: Constraining the ratio between transport and vertical mixing. Paleoceanography, 26, PA1213, https://doi.org/10.1029/2010PA001938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch-Stieglitz, J., and Coauthors, 2007: Atlantic meridional overturning circulation during the Last Glacial Maximum. Science, 316, 6669, https://doi.org/10.1126/science.1137127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marzocchi, A., and M. F. Jansen, 2019: Global cooling linked to increased glacial carbon storage via changes in Antarctic sea ice. Nat. Geosci., 12, 10011005, https://doi.org/10.1038/s41561-019-0466-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mashayek, A., H. Salehipour, D. Bouffard, C. Caulfield, R. Ferrari, M. Nikurashin, W. Peltier, and W. Smyth, 2017: Efficiency of turbulent mixing in the abyssal ocean circulation. Geophys. Res. Lett., 44, 62966306, https://doi.org/10.1002/2016GL072452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nadeau, L.-P., R. Ferrari, and M. F. Jansen, 2019: Antarctic sea ice control on the depth of North Atlantic deep water. J. Climate, 32, 25372551, https://doi.org/10.1175/JCLI-D-18-0519.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2013: Overturning circulation driven by breaking internal waves in the deep ocean. Geophys. Res. Lett., 40, 31333137, https://doi.org/10.1002/grl.50542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oppo, D. W., G. Gebbie, K.-F. Huang, W. B. Curry, T. M. Marchitto, and K. R. Pietro, 2018: Data constraints on glacial Atlantic water mass geometry and properties. Paleoceanogr. Paleoclimatol., 33, 10131034, https://doi.org/10.1029/2018PA003408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pavia, F. J., R. F. Anderson, P. Pinedo-Gonzalez, M. Q. Fleisher, M. A. Brzezinski, and R. S. Robinson, 2020: Isopycnal transport and scavenging of 230Th and 231Pa in the Pacific Southern Ocean. Global Biogeochem. Cycles, 34, e2020GB006760, https://doi.org/10.1029/2020GB006760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ragen, S., M.-A. Pradal, and A. Gnanadesikan, 2020: The impact of parameterized lateral mixing on the Antarctic Circumpolar Current in a coupled climate model. J. Phys. Oceanogr., 50, 965982, https://doi.org/10.1175/JPO-D-19-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, https://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roach, C. J., D. Balwada, and K. Speer, 2018: Global observations of horizontal mixing from Argo float and surface drifter trajectories. J. Geophys. Res. Oceans, 123, 45604575, https://doi.org/10.1029/2018JC013750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rojas, M., 2013: Sensitivity of southern hemisphere circulation to LGM and 4× CO2 climates. Geophys. Res. Lett., 40, 965970, https://doi.org/10.1002/grl.50195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnickas, D., Jr., J. Palter, D. Hebert, and H. T. Rossby, 2019: Isopycnal mixing in the North Atlantic oxygen minimum zone revealed by RAFOS floats. J. Geophys. Res. Oceans, 124, 64786497, https://doi.org/10.1029/2019JC015148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sime, L. C., K. E. Kohfeld, C. Le Quéré, E. W. Wolff, A. M. de Boer, R. M. Graham, and L. Bopp, 2013: Southern hemisphere westerly wind changes during the Last Glacial Maximum: Model-data comparison. Quat. Sci. Rev., 64, 104120, https://doi.org/10.1016/j.quascirev.2012.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sime, L. C., D. Hodgson, T. J. Bracegirdle, C. Allen, B. Perren, S. Roberts, and A. M. de Boer, 2016: Sea ice led to poleward-shifted winds at the Last Glacial Maximum: The influence of state dependency on CMIP5 and PMIP3 models. Climate Past, 12, 22412253, https://doi.org/10.5194/cp-12-2241-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, B. B., and R. F. Keeling, 2000: The influence of Antarctic sea ice on glacial–interglacial CO2 variations. Nature, 404, 171174, https://doi.org/10.1038/35004556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., A. C. Naveira Garabato, J. R. Ledwell, A. M. Thurnherr, J. M. Toole, and A. J. Watson, 2012: Turbulence and diapycnal mixing in Drake Passage. J. Phys. Oceanogr., 42, 21432152, https://doi.org/10.1175/JPO-D-12-027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuut, J.-B. W., M. A. Prins, R. R. Schneider, G. J. Weltje, J. F. Jansen, and G. Postma, 2002: A 300-kyr record of aridity and wind strength in southwestern Africa: Inferences from grain-size distributions of sediments on Walvis Ridge, SE Atlantic. Mar. Geol., 180, 221233, https://doi.org/10.1016/S0025-3227(01)00215-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S. I. Eisenman, and A. L. Stewart, 2018: Does Southern Ocean surface forcing shape the global ocean overturning circulation? Geophys. Res. Lett., 45, 24132423, https://doi.org/10.1002/2017GL076437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2013: Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography, 26, 8097, https://doi.org/10.5670/oceanog.2013.07.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trossman, D., L. Thompson, S. Mecking, and M. Warner, 2012: On the formation, ventilation, and erosion of mode waters in the North Atlantic and Southern Oceans. J. Geophys. Res., 117, C09026, https://doi.org/10.1029/2012JC008090.

    • Search Google Scholar
    • Export Citation
  • Tulloch, R., and Coauthors, 2014: Direct estimate of lateral eddy diffusivity upstream of drake passage. J. Phys. Oceanogr., 44, 25932616, https://doi.org/10.1175/JPO-D-13-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, https://doi.org/10.1175/JPO-D-13-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterman, S., A. C. Naveira Garabato, and K. L. Polzin, 2013: Internal waves and turbulence in the Antarctic circumpolar current. J. Phys. Oceanogr., 43, 259282, https://doi.org/10.1175/JPO-D-11-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, A. J., G. K. Vallis, and M. Nikurashin, 2015: Southern Ocean buoyancy forcing of ocean ventilation and glacial atmospheric CO2. Nat. Geosci., 8, 861864, https://doi.org/10.1038/ngeo2538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilmes, S.-B., A. Schmittner, and J. M. Green, 2019: Glacial ice sheet extent effects on modeled tidal mixing and the global overturning circulation. Paleoceanogr. Paleoclimatol., 34, 14371454, https://doi.org/10.1029/2019PA003644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, W. R., 2012: An exact thickness-weighted average formulation of the Boussinesq equations. J. Phys. Oceanogr., 42, 692707, https://doi.org/10.1175/JPO-D-11-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 443 0 0
Full Text Views 2178 1239 306
PDF Downloads 765 143 15