• Andres, M., S. Jan, T. Sanford, V. Mensah, L. Centurioni, and J. Book, 2015: Mean structure and variability of the Kuroshio from northeastern Taiwan to southwestern Japan. Oceanography, 28, 8495, https://doi.org/10.5670/oceanog.2015.84.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., S. T. Gille, D. Menemenlis, C. B. Rocha, N. Rascle, B. Chapron, J. Gula, and J. Molemaker, 2017: Small-scale open ocean currents have large effects on wind wave heights. J. Geophys. Res. Oceans, 122, 45004517, https://doi.org/10.1002/2016JC012413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, X., G. Gao, and J. Yan, 2001: Three-dimensional simulation of tide and tidal current characteristics in the East China Sea. Oceanol. Acta, 24, 135149, https://doi.org/10.1016/S0399-1784(00)01134-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnier, B., L. Siefridt, and P. Marchesiello, 1995: Thermal forcing for a global ocean circulation model using a three-year climatology of ECMWF analyses. J. Mar. Syst., 6, 363380, https://doi.org/10.1016/0924-7963(94)00034-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernier, N. B., and K. R. Thompson, 2007: Tide-surge interaction off the east coast of Canada and northeastern United States. J. Geophys. Res., 112, C06008, https://doi.org/10.1029/2006JC003793.

    • Search Google Scholar
    • Export Citation
  • Bian, C., W. Jiang, and R. J. Greatbatch, 2013: An exploratory model study of sediment transport sources and deposits in the Bohai Sea, Yellow Sea, and East China Sea. J. Geophys. Res. Oceans, 118, 59085923, https://doi.org/10.1002/2013JC009116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolaños, R., J. M. Brown, and A. J. Souza, 2014: Wave–current interactions in a tide dominated estuary. Cont. Shelf Res., 87, 109123, https://doi.org/10.1016/j.csr.2014.05.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booij, N., R. C. Ris, and L. H. Holthuijsen, 1999: A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res., 104, 76497666, https://doi.org/10.1029/98JC02622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639640, https://doi.org/10.1002/qj.49708135027.

  • Chen, Y., L. Chen, H. Zhang, and W. Gong, 2019: Effects of wave-current interaction on the Pearl River Estuary during Typhoon Hato. Estuarine Coastal Shelf Sci., 228, 106364, https://doi.org/10.1016/j.ecss.2019.106364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., A. F. Bennett, and M. G. G. Foreman, 1994: TOPEX/POSEIDON tides estimated using a global inverse model. J. Geophys. Res., 99, 24 82124 852, https://doi.org/10.1029/94JC01894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., I. Ginis, T. Hara, C. W. Wright, and E. J. Walsh, 2009: Numerical simulations and observations of surface wave fields under an extreme tropical cyclone. J. Phys. Oceanogr., 39, 20972116, https://doi.org/10.1175/2009JPO4224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, G., Y. Wang, Z. Wei, B. H. Choi, X. Wang, and J. Wang, 2004: Empirical cotidal charts of the Bohai, Yellow, and East China Seas from 10 years of TOPEX/Poseidon altimetry. J. Geophys. Res., 109, C11006, https://doi.org/10.1029/2004JC002484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, X., M. Li, B. Yin, D. Yang, and H. Yang, 2018: Study of storm surge trends in typhoon-prone coastal areas based on observations and surge-wave coupled simulations. Int. J. Appl. Earth Obs. Geoinf., 68, 272278, https://doi.org/10.1016/j.jag.2018.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forbes, C., J. Rhome, C. Mattocks, and A. Taylor, 2014: Predicting the storm surge threat of Hurricane Sandy with the National Weather Service SLOSH model. J. Mar. Sci. Eng., 2, 437476, https://doi.org/10.3390/jmse2020437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, L., and J. Sheng, 2015: Statistical estimation of extreme ocean waves over the eastern Canadian shelf from 30-year numerical wave simulation. Ocean Dyn., 65, 14891507, https://doi.org/10.1007/s10236-015-0878-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegermiller, C. A., J. C. Warner, M. Olabarrieta, and C. R. Sherwood, 2019: Wave–current interaction between Hurricane Matthew wave fields and the Gulf Stream. J. Phys. Oceanogr., 49, 28832900, https://doi.org/10.1175/JPO-D-19-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopkins, J., S. Elgar, and B. Raubenheimer, 2016: Observations and model simulations of wave-current interaction on the inner shelf. J. Geophys. Res. Oceans, 121, 198208, https://doi.org/10.1002/2015JC010788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2005: Altimeter measurements of wind and wave modulation by the Kuroshio in the Yellow and East China Seas. J. Oceanogr., 61, 987993, https://doi.org/10.1007/s10872-006-0015-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jullien, S., J. Aucan, J. Lefèvre, A. Peltier, and C. E. Menkes, 2020: Tropical cyclone induced wave setup around New Caledonia during Cyclone COOK (2017). J. Coastal Res., 95, 14541459, https://doi.org/10.2112/SI95-281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirby, J. T., and T.-M. Chen, 1989: Surface waves on vertically sheared flows: Approximate dispersion relations. J. Geophys. Res., 94, 10131027, https://doi.org/10.1029/JC094iC01p01013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and et al. , 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163, https://doi.org/10.1038/ngeo779.

  • Komen, G. J., K. Hasselmann, and K. Hasselmann, 1984: On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr., 14, 12711285, https://doi.org/10.1175/1520-0485(1984)014<1271:OTEOAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, N., G. Voulgaris, J. C. Warner, and M. Olabarrieta, 2012: Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications. Ocean Modell., 47, 6595, https://doi.org/10.1016/j.ocemod.2012.01.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, M. J., T. Palmer, R. Hashemi, P. Robins, A. Saulter, J. Brown, H. Lewis, and S. Neill, 2019: Wave-tide interaction modulates nearshore wave height. Ocean Dyn., 69, 367384, https://doi.org/10.1007/s10236-018-01245-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapp, G. R., C. S. Welch, and J. C. Munday, 1985: Wave refraction by warm core rings. J. Geophys. Res., 90, 71537162, https://doi.org/10.1029/JC090iC04p07153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., R. Benshila, R. Almar, Y. Uchiyama, J. C. McWilliams, and A. Shchepetkin, 2015: On tridimensional rip current modeling. Ocean Modell., 96, 3648, https://doi.org/10.1016/j.ocemod.2015.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., J. M. Restrepo, and E. M. Lane, 2004: An asymptotic theory for the interaction of waves and currents in coastal waters. J. Fluid Mech., 511, 135178, https://doi.org/10.1017/S0022112004009358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., 2008: The depth-dependent current and wave interaction equations: A revision. J. Phys. Oceanogr., 38, 25872596, https://doi.org/10.1175/2008JPO3971.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, N., M. Kato, S. Kim, H. Mase, Y. Shibutani, T. Takemi, K. Tsuboki, and T. Yasuda, 2014: Local amplification of storm surge by Super Typhoon Haiyan in Leyte Gulf. Geophys. Res. Lett., 41, 51065113, https://doi.org/10.1002/2014GL060689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murty, P. L. N., K. G. Sandhya, P. K. Bhaskaran, F. Jose, R. Gayathri, T. M. Balakrishnan Nair, T. Srinivasa Kumar, and S. S. C. Shenoi, 2014: A coupled hydrodynamic modeling system for PHAILIN cyclone in the Bay of Bengal. Coast. Eng., 93, 7181, https://doi.org/10.1016/j.coastaleng.2014.08.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olabarrieta, M., J. C. Warner, and N. Kumar, 2011: Wave-current interaction in Willapa Bay. J. Geophys. Res., 116, C12014, https://doi.org/10.1029/2011JC007387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pareja-Roman, L. F., R. J. Chant, and D. K. Ralston, 2019: Effects of locally generated wind waves on the momentum budget and subtidal exchange in a coastal plain estuary. J. Geophys. Res. Oceans, 124, 10051028, https://doi.org/10.1029/2018JC014585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawlowicz, R., B. Beardsley, and S. Lentz, 2002: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci., 28, 929937, https://doi.org/10.1016/S0098-3004(02)00013-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penven, P., P. Marchesiello, L. Debreu, and J. Lefevre, 2008: Software tools for pre- and post-processing of oceanic regional simulations. Environ. Modell. Software, 23, 660662, https://doi.org/10.1016/j.envsoft.2007.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinheiro, J. P., C. L. Lopes, A. S. Ribeiro, M. C. Sousa, and J. M. Dias, 2020: Tide-surge interaction in Ria de Aveiro lagoon and its influence in local inundation patterns. Cont. Shelf Res., 200, 104132, https://doi.org/10.1016/j.csr.2020.104132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pugh, D. T., 1987: Tides, Surges and Mean Sea-Level: A Handbook for Engineers and Scientists. John Wiley, 486 pp.

  • Quilfen, Y., and B. Chapron, 2019: Ocean surface wave-current signatures from satellite altimeter measurements. Geophys. Res. Lett., 46, 253261, https://doi.org/10.1029/2018GL081029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramos-Valle, A. N., E. N. Curchitser, C. L. Bruyère, 2020: Impact of tropical cyclone landfall angle on storm surge along the Mid-Atlantic bight. J. Geophys. Res. Atmos., 125, e2019JD031796, https://doi.org/10.1029/2019JD031796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rapizo, H., T. H. Durrant, and A. V. Babanin, 2018: An assessment of the impact of surface currents on wave modeling in the Southern Ocean. Ocean Dyn., 68, 939955, https://doi.org/10.1007/s10236-018-1171-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rego, J. L., and C. Li, 2010: Nonlinear terms in storm surge predictions: Effect of tide and shelf geometry with case study from Hurricane Rita. J. Geophys. Res., 115, C06020, https://doi.org/10.1029/2009JC005285.

    • Search Google Scholar
    • Export Citation
  • Romero, L., L. Lenain, and W. K. Melville, 2017: Observations of surface wave–current interaction. J. Phys. Oceanogr., 47, 615632, https://doi.org/10.1175/JPO-D-16-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rong, Z. R., R. D. Hetland, W. X. Zhang, and X. Q. Zhang, 2014: Current-wave interaction in the Mississippi-Atchafalaya river plume on the Texas-Louisiana shelf. Ocean Modell., 84, 6783, https://doi.org/10.1016/j.ocemod.2014.09.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, D., X. H. Wang, X. Zhu, and X. Bao, 2013: Modeling studies of the far-field effects of tidal flat reclamation on tidal dynamics in the East China Seas. Estuarine Coastal Shelf Sci., 133, 147160, https://doi.org/10.1016/j.ecss.2013.08.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Styles, R., and S. M. Glenn, 2000: Modeling stratified wave and current bottom boundary layers on the continental shelf. J. Geophys. Res., 105, 24 11924 139, https://doi.org/10.1029/2000JC900115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., W. Perrie, and B. Toulany, 2018: Simulation of wave-current interactions under hurricane conditions using an unstructured-grid model: Impacts on ocean waves. J. Geophys. Res. Oceans, 123, 37393760, https://doi.org/10.1029/2017JC012939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, P. K., and M. J. Yelland, 2001: The dependence of sea surface roughness on the height and steepness of the waves. J. Phys. Oceanogr., 31, 572590, https://doi.org/10.1175/1520-0485(2001)031<0572:TDOSSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, D., H. Zhang, W. Zhang, F. Zhou, X. Sun, Y. Zhou, and D. Ke, 2020: Wave glider observations of surface waves during three tropical cyclones in the South China sea. Water, 12, 1331, https://doi.org/10.3390/w12051331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., 1991: Effects of tides and storm surges on north sea wind waves. J. Phys. Oceanogr., 21, 766781, https://doi.org/10.1175/1520-0485(1991)021<0766:EOTASS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uchiyama, Y., J. C. McWilliams, and A. F. Shchepetkin, 2010: Wave–current interaction in an oceanic circulation model with a vortex-force formalism: Application to the surf zone. Ocean Modell., 34, 1635, https://doi.org/10.1016/j.ocemod.2010.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wandres, M., E. M. S. Wijeratne, S. Cosoli, and C. Pattiaratchi, 2017: The effect of the Leeuwin Current on offshore surface gravity waves in southwest western Australia. J. Geophys. Res. Oceans, 122, 90479067, https://doi.org/10.1002/2017JC013006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., C. Dong, and K. Yu, 2020: The influences of the Kuroshio on wave characteristics and wave energy distribution in the East China Sea. Deep-Sea Res. I, 158, 103228, https://doi.org/10.1016/j.dsr.2020.103228.

    • Search Google Scholar
    • Export Citation
  • Wang, P., and J. Sheng, 2016: A comparative study of wave-current interactions over the eastern Canadian shelf under severe weather conditions using a coupled wave-circulation model. J. Geophys. Res. Oceans, 121, 52525281, https://doi.org/10.1002/2016JC011758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y.-L., C.-R. Wu, and S.-Y. Chao, 2016: Warming and weakening trends of the Kuroshio during 1993–2013. Geophys. Res. Lett., 43, 92009207, https://doi.org/10.1002/2016GL069432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J. C., C. R. Sherwood, H. G. Arango, and R. P. Signell, 2005: Performance of four turbulence closure models implemented using a generic length scale method. Ocean Modell., 8, 81113, https://doi.org/10.1016/j.ocemod.2003.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J. C., C. R. Sherwood, R. P. Signell, C. K. Harris, and H. G. Arango, 2008: Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Comput. Geosci., 34, 12841306, https://doi.org/10.1016/j.cageo.2008.02.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J. C., B. Armstrong, R. He, and J. B. Zambon, 2010: Development of a Coupled Ocean–Atmosphere–Wave–Sediment transport (COAWST) modeling system. Ocean Modell., 35, 230244, https://doi.org/10.1016/j.ocemod.2010.07.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., Q. Yang, D. Tian, B. Han, S. Wu, and H. Zhang, 2019: Response of coastal water in the Taiwan Strait to Typhoon Nesat of 2017. Water, 11, 2331, https://doi.org/10.3390/w11112331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R. H., and C. Y. Li, 2018: Upper ocean response to the passage of two sequential typhoons. Deep-Sea Res. I, 132, 6879, https://doi.org/10.1016/j.dsr.2017.12.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R. H., H. Zhang, D. K. Chen, C. Y. Li, and J. M. Lin, 2018: Impact of Typhoon Kalmaegi (2014) on the South China Sea: Simulations using a fully coupled atmosphere-ocean-wave model. Ocean Modell., 131, 132151, https://doi.org/10.1016/j.ocemod.2018.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., B. Yin, Z. Liu, T. Bai, J. Qi, and H. Chen, 2012: Numerical study on the pattern and origins of Kuroshio branches in the bottom water of southern East China Sea in summer. J. Geophys. Res., 117, C02014, https://doi.org/10.1029/2011JC007528.

    • Search Google Scholar
    • Export Citation
  • Yang, D., B. Yin, F. Chai, X. Feng, H. Xue, G. Gao, and F. Yu, 2018: The onshore intrusion of Kuroshio subsurface water from February to July and a mechanism for the intrusion variation. Prog. Oceanogr., 167, 97115, https://doi.org/10.1016/j.pocean.2018.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, X., W. Pan, X. Zheng, S. Zhou, and X. Tao, 2017: Effects of wave-current interaction on storm surge in the Taiwan Strait: Insights from Typhoon Morakot. Cont. Shelf Res., 146, 4757, https://doi.org/10.1016/j.csr.2017.08.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., D. Chen, L. Zhou, X. Liu, T. Ding, and B. Zhou, 2016: Upper ocean response to Typhoon Kalmaegi (2014). J. Geophys. Res. Oceans, 121, 65206535, https://doi.org/10.1002/2016JC012064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., and et al. , 2018: Net modulation of upper ocean thermal structure by Typhoon Kalmaegi (2014). J. Geophys. Res. Oceans, 123, 71547171, https://doi.org/10.1029/2018JC014119.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 375 375 78
Full Text Views 135 135 22
PDF Downloads 183 183 42

Effects of Wave–Current Interaction on the Eastern China Coastal Waters during Super Typhoon Lekima (2019)

View More View Less
  • 1 School of Atmospheric Sciences, Sun Yat-sen University, and Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai China
  • | 2 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
  • | 3 Marine Monitoring and Forecasting Center of Zhejiang Province, Hangzhou, China
  • | 4 State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Lekima was a devastating super typhoon hitting China in 2019. Here, we use a high-resolution wave–current coupling model to investigate the impacts of wave–current interaction during Lekima on wave height, storm surge, ocean currents, and momentum balance. The model results were in good agreement with observations. It was found that, in the open waters, the strong currents generated by the typhoon winds reduced the typhoon-induced maximum significant wave heights (MSWHs) by 6%–15%. The baroclinicity of seawater also slightly reduced the MSWHs by approximately 3%. In the coastal waters, the MSWHs were increased by 6%–15% when feedbacks from water levels were considered. The typhoon-induced highest storm surge occurred in the coastal waters right of the typhoon’s landing position. The nonconservative wave forces contributed by approximately 0.1–0.4 m to the most severe storm surge (3 m), with this effect being most prominent in coastal waters. The baroclinicity of seawater generally increased the storm surge but had little influence on very shallow waters. Tides tend to exacerbate storm surge in most nearshore waters, except in a small bay. Waves generally increased the velocity of offshore ocean currents via the wave-breaking-induced acceleration. A cross-shore momentum balance analysis shows that when the typhoon was near the shore, the dominant terms in the momentum equation were the horizontal pressure gradient force and the surface wind stress, and the contribution of wave breaking had similar pattern to that of the wind stress but a lower magnitude. Our findings have significant implications for the numerical modeling of typhoons and the prediction of their impacts in the coastal environment.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Renhao Wu, wurenhao@mail.sysu.edu.cn; Han Zhang, zhanghan@sio.org.cn

Abstract

Lekima was a devastating super typhoon hitting China in 2019. Here, we use a high-resolution wave–current coupling model to investigate the impacts of wave–current interaction during Lekima on wave height, storm surge, ocean currents, and momentum balance. The model results were in good agreement with observations. It was found that, in the open waters, the strong currents generated by the typhoon winds reduced the typhoon-induced maximum significant wave heights (MSWHs) by 6%–15%. The baroclinicity of seawater also slightly reduced the MSWHs by approximately 3%. In the coastal waters, the MSWHs were increased by 6%–15% when feedbacks from water levels were considered. The typhoon-induced highest storm surge occurred in the coastal waters right of the typhoon’s landing position. The nonconservative wave forces contributed by approximately 0.1–0.4 m to the most severe storm surge (3 m), with this effect being most prominent in coastal waters. The baroclinicity of seawater generally increased the storm surge but had little influence on very shallow waters. Tides tend to exacerbate storm surge in most nearshore waters, except in a small bay. Waves generally increased the velocity of offshore ocean currents via the wave-breaking-induced acceleration. A cross-shore momentum balance analysis shows that when the typhoon was near the shore, the dominant terms in the momentum equation were the horizontal pressure gradient force and the surface wind stress, and the contribution of wave breaking had similar pattern to that of the wind stress but a lower magnitude. Our findings have significant implications for the numerical modeling of typhoons and the prediction of their impacts in the coastal environment.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Renhao Wu, wurenhao@mail.sysu.edu.cn; Han Zhang, zhanghan@sio.org.cn
Save