Off-Equatorial Deep-Cycle Turbulence Forced by Tropical Instability Waves in the Equatorial Pacific

D. A. Cherian National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by D. A. Cherian in
Current site
Google Scholar
PubMed
Close
,
D. B. Whitt National Center for Atmospheric Research, Boulder, Colorado
Earth Sciences Division, NASA Ames Research Center, Moffett Field, California

Search for other papers by D. B. Whitt in
Current site
Google Scholar
PubMed
Close
,
R. M. Holmes Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia
ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by R. M. Holmes in
Current site
Google Scholar
PubMed
Close
,
R.-C. Lien Applied Physics Laboratory, University of Washington, Seattle, Washington
School of Oceanography, University of Washington, Seattle, Washington

Search for other papers by R.-C. Lien in
Current site
Google Scholar
PubMed
Close
,
S. D. Bachman National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by S. D. Bachman in
Current site
Google Scholar
PubMed
Close
, and
W. G. Large National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by W. G. Large in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The equatorial Pacific cold tongue is a site of large heat absorption by the ocean. This heat uptake is enhanced by a daily cycle of shear turbulence beneath the mixed layer—“deep-cycle turbulence”—that removes heat from the sea surface and deposits it in the upper flank of the Equatorial Undercurrent. Deep-cycle turbulence results when turbulence is triggered daily in sheared and stratified flow that is marginally stable (gradient Richardson number Ri ≈ 0.25). Deep-cycle turbulence has been observed on numerous occasions in the cold tongue at 0°, 140°W, and may be modulated by tropical instability waves (TIWs). Here we use a primitive equation regional simulation of the cold tongue to show that deep-cycle turbulence may also occur off the equator within TIW cold cusps where the flow is marginally stable. In the cold cusp, preexisting equatorial zonal shear u z is enhanced by horizontal vortex stretching near the equator, and subsequently modified by horizontal vortex tilting terms to generate meridional shear υ z off of the equator. Parameterized turbulence in the sheared flow of the cold cusp is triggered daily by the descent of the surface mixing layer associated with the weakening of the stabilizing surface buoyancy flux in the afternoon. Observational evidence for off-equatorial deep-cycle turbulence is restricted to a few CTD casts, which, when combined with shear from shipboard ADCP data, suggest the presence of marginally stable flow in TIW cold cusps. This study motivates further observational campaigns to characterize the modulation of deep-cycle turbulence by TIWs both on and off the equator.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Deepak A. Cherian, deepak@cherian.net

Abstract

The equatorial Pacific cold tongue is a site of large heat absorption by the ocean. This heat uptake is enhanced by a daily cycle of shear turbulence beneath the mixed layer—“deep-cycle turbulence”—that removes heat from the sea surface and deposits it in the upper flank of the Equatorial Undercurrent. Deep-cycle turbulence results when turbulence is triggered daily in sheared and stratified flow that is marginally stable (gradient Richardson number Ri ≈ 0.25). Deep-cycle turbulence has been observed on numerous occasions in the cold tongue at 0°, 140°W, and may be modulated by tropical instability waves (TIWs). Here we use a primitive equation regional simulation of the cold tongue to show that deep-cycle turbulence may also occur off the equator within TIW cold cusps where the flow is marginally stable. In the cold cusp, preexisting equatorial zonal shear u z is enhanced by horizontal vortex stretching near the equator, and subsequently modified by horizontal vortex tilting terms to generate meridional shear υ z off of the equator. Parameterized turbulence in the sheared flow of the cold cusp is triggered daily by the descent of the surface mixing layer associated with the weakening of the stabilizing surface buoyancy flux in the afternoon. Observational evidence for off-equatorial deep-cycle turbulence is restricted to a few CTD casts, which, when combined with shear from shipboard ADCP data, suggest the presence of marginally stable flow in TIW cold cusps. This study motivates further observational campaigns to characterize the modulation of deep-cycle turbulence by TIWs both on and off the equator.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Deepak A. Cherian, deepak@cherian.net
Save
  • Adcroft, A., C. N. Hill, J.-M. Campin, J. Marshall, and P. Heimbach, 2004: Overview of the formulation and numerics of the MIT GCM. Seminar on Recent Developments in Numerical Methods for Atmospheric and Ocean Modelling, Reading, United Kingdom, ECMWF, 11 pp., https://www.ecmwf.int/node/7642.

  • Chelton, D. B., F. J. Wentz, C. L. Gentemann, R. A. de Szoeke, and M. G. Schlax, 2000: Satellite microwave SST observations of transequatorial tropical instability waves. Geophys. Res. Lett., 27, 12391242, https://doi.org/10.1029/1999GL011047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Computational And Information Systems Laboratory, 2019: Cheyenne: SGI ICE XA Cluster (Climate Simulation Laboratory). National Center for Atmospheric Research, https://doi.org/10.5065/D6RX99HX.

    • Crossref
    • Export Citation
  • Dutrieux, P., C. E. Menkes, J. Vialard, P. Flament, and B. Blanke, 2008: Lagrangian study of tropical instability vortices in the Atlantic. J. Phys. Oceanogr., 38, 400417, https://doi.org/10.1175/2007JPO3763.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., H. Peters, J. C. Wesson, N. S. Oakey, and T. J. Shay, 1985: Intensive measurements of turbulence and shear in the equatorial undercurrent. Nature, 318, 140144, https://doi.org/10.1038/318140a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, R. M., and L. N. Thomas, 2015: The modulation of equatorial turbulence by tropical instability waves in a regional ocean model. J. Phys. Oceanogr., 45, 11551173, https://doi.org/10.1175/JPO-D-14-0209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, R. M., and L. N. Thomas, 2016: Modulation of tropical instability wave intensity by equatorial Kelvin waves. J. Phys. Oceanogr., 46, 26232643, https://doi.org/10.1175/JPO-D-16-0064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, R. M., L. N. Thomas, L. Thompson, and D. Darr, 2014: Potential vorticity dynamics of tropical instability vortices. J. Phys. Oceanogr., 44, 9951011, https://doi.org/10.1175/JPO-D-13-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, R. M., J. D. Zika, and M. H. England, 2019: Diathermal heat transport in a global ocean model. J. Phys. Oceanogr., 49, 141161, https://doi.org/10.1175/JPO-D-18-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoyer, S., and J. J. Hamman, 2017: Xarray: N-D labeled arrays and datasets in Python. J. Open Res. Software, 5, 10, https://doi.org/10.5334/jors.148.

  • Inoue, R., R.-C. Lien, and J. N. Moum, 2012: Modulation of equatorial turbulence by a tropical instability wave. J. Geophys. Res., 117, C10009, https://doi.org/10.1029/2011JC007767.

    • Search Google Scholar
    • Export Citation
  • Inoue, R., R. Lien, J. N. Moum, R. C. Perez, and M. C. Gregg, 2019: Variations of equatorial shear, stratification, and turbulence within a tropical instability wave cycle. J. Geophys. Res. Oceans, 124, 18581875, https://doi.org/10.1029/2018JC014480.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., B. M. Sloyan, W. S. Kessler, and K. E. McTaggart, 2002: Direct measurements of upper ocean currents and water properties across the tropical Pacific during the 1990s. Prog. Oceanogr., 52, 3161, https://doi.org/10.1016/S0079-6611(02)00021-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennan, S. C., and P. J. Flament, 2000: Observations of a tropical instability vortex. J. Phys. Oceanogr., 30, 22772301, https://doi.org/10.1175/1520-0485(2000)030<2277:OOATIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., and P. R. Gent, 1999: Validation of vertical mixing in an equatorial ocean model using large eddy simulations and observations. J. Phys. Oceanogr., 29, 449464, https://doi.org/10.1175/1520-0485(1999)029<0449:VOVMIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legeckis, R., 1977: Long waves in the eastern equatorial Pacific Ocean: A view from a geostationary satellite. Science, 197, 11791181, https://doi.org/10.1126/science.197.4309.1179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., D. R. Caldwell, M. C. Gregg, and J. N. Moum, 1995: Turbulence variability at the equator in the central Pacific at the beginning of the 19911993 El Niño. J. Geophys. Res., 100, 6881, https://doi.org/10.1029/94JC03312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., E. A. D’Asaro, and C. E. Menkes, 2008: Modulation of equatorial turbulence by tropical instability waves. Geophys. Res. Lett., 35, L24607, https://doi.org/10.1029/2008GL035860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., L. Fang, A. Köhl, Z. Liu, W. D. Smyth, and F. Wang, 2019: The subsurface mode tropical instability waves in the equatorial Pacific Ocean and their impacts on shear and mixing. Geophys. Res. Lett., 46, 12 27012 278, https://doi.org/10.1029/2019GL085123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C. X. Wang, Z. Liu, A. Köhl, W. D. Smyth, and F. Wang, 2020: On the formation of a subsurface weakly sheared laminar layer and an upper thermocline strongly sheared turbulent layer in the eastern equatorial Pacific: Interplays of multiple time scale equatorial waves. J. Phys. Oceanogr., 50, 29072930, https://doi.org/10.1175/JPO-D-19-0245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyman, J. M., D. B. Chelton, R. A. deSzoeke, and R. M. Samelson, 2005: Tropical instability waves as a resonance between equatorial Rossby waves. J. Phys. Oceanogr., 35, 232254, https://doi.org/10.1175/JPO-2668.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menkes, C. E. R., J. G. Vialard, S. C. Kennan, J.-P. Boulanger, and G. V. Madec, 2006: A modeling study of the impact of tropical instability waves on the heat budget of the eastern equatorial Pacific. J. Phys. Oceanogr., 36, 847865, https://doi.org/10.1175/JPO2904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., and D. R. Caldwell, 1985: Local influences on shear-flow turbulence in the equatorial ocean. Science, 230, 315316, https://doi.org/10.1126/science.230.4723.315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., R.-C. Lien, A. Perlin, J. D. Nash, M. C. Gregg, and P. J. Wiles, 2009: Sea surface cooling at the equator by subsurface mixing in tropical instability waves. Nat. Geosci., 2, 761765, https://doi.org/10.1038/ngeo657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., A. Perlin, J. D. Nash, and M. J. McPhaden, 2013: Seasonal sea surface cooling in the equatorial Pacific cold tongue controlled by ocean mixing. Nature, 500, 6467, https://doi.org/10.1038/nature12363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pei, S., T. Shinoda, W. Wang, and R. Lien, 2020: Simulation of deep cycle turbulence by a global ocean general circulation model. Geophys. Res. Lett., 47, e2020GL088384, https://doi.org/10.1029/2020GL088384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, H., M. C. Gregg, and J. M. Toole, 1988: On the parameterization of equatorial turbulence. J. Geophys. Res., 93, 1199, https://doi.org/10.1029/JC093iC02p01199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, H., M. C. Gregg, and T. B. Sanford, 1994: The diurnal cycle of the upper equatorial ocean: Turbulence, fine-scale shear, and mean shear. J. Geophys. Res., 99, 7707, https://doi.org/10.1029/93JC03506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pham, H. T., W. D. Smyth, S. Sarkar, and J. N. Moum, 2017: Seasonality of deep cycle turbulence in the eastern equatorial Pacific. J. Phys. Oceanogr., 47, 21892209, https://doi.org/10.1175/JPO-D-17-0008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., 1976: Instabilities of zonal equatorial currents. J. Geophys. Res., 81, 37253735, https://doi.org/10.1029/JC081i021p03725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pujiana, K., J. N. Moum, and W. D. Smyth, 2018: The role of turbulence in redistributing upper-ocean heat, freshwater, and momentum in response to the MJO in the equatorial Indian Ocean. J. Phys. Oceanogr., 48, 197220, https://doi.org/10.1175/JPO-D-17-0146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiao, L., and R. H. Weisberg, 1995: Tropical instability wave kinematics: Observations from the tropical instability wave experiment. J. Geophys. Res., 100, 8677, https://doi.org/10.1029/95JC00305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, S., A. T. Wittenberg, S. M. Griffies, and F. Zeng, 2018: Understanding the equatorial Pacific cold tongue time-mean heat budget. Part I: Diagnostic framework. J. Climate, 31, 99659985, https://doi.org/10.1175/JCLI-D-18-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schudlich, R. R., and J. F. Price, 1992: Diurnal cycles of current, temperature, and turbulent dissipation in a model of the equatorial upper ocean. J. Geophys. Res., 97, 54095422, https://doi.org/10.1029/91JC01918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., and J. N. Moum, 2013: Marginal instability and deep cycle turbulence in the eastern equatorial Pacific Ocean. Geophys. Res. Lett., 40, 61816185, https://doi.org/10.1002/2013GL058403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., J. N. Moum, L. Li, and S. A. Thorpe, 2013: Diurnal shear instability, the descent of the surface shear layer, and the deep cycle of equatorial turbulence. J. Phys. Oceanogr., 43, 24322455, https://doi.org/10.1175/JPO-D-13-089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., J. D. Nash, and J. N. Moum, 2019: Self-organized criticality in geophysical turbulence. Sci. Rep., 9, 3747, https://doi.org/10.1038/s41598-019-39869-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strutton, P. G., J. P. Ryan, and F. P. Chavez, 2001: Enhanced chlorophyll associated with tropical instability waves in the equatorial Pacific. Geophys. Res. Lett., 28, 20052008, https://doi.org/10.1029/2000GL012166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., and Z. Liu, 2009: Marginal instability? J. Phys. Oceanogr., 39, 23732381, https://doi.org/10.1175/2009JPO4153.1.

  • Tsujino, H., and Coauthors, 2018: JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do). Ocean Modell., 130, 79139, https://doi.org/10.1016/j.ocemod.2018.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., and M. J. McPhaden, 1999: The surface-layer heat balance in the equatorial Pacific Ocean. Part I: Mean seasonal cycle. J. Phys. Oceanogr., 29, 18121831, https://doi.org/10.1175/1520-0485(1999)029<1812:TSLHBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., and M. J. McPhaden, 2000: The surface-layer heat balance in the equatorial Pacific Ocean. Part II: Interannual variability. J. Phys. Oceanogr., 30, 29893008, https://doi.org/10.1175/1520-0485(2001)031<2989:TSLHBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, S. J., and J. N. Moum, 2019: Feedback of mixing to ENSO phase change. Geophys. Res. Lett., 46, 13 92013 927, https://doi.org/10.1029/2019GL085415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, S. J., R. M. Holmes, E. H. M. Hawkins, M. S. Hoecker-Martínez, A. C. Savage, and J. N. Moum, 2018: Buoyant gravity currents released from tropical instability waves. J. Phys. Oceanogr., 48, 361382, https://doi.org/10.1175/JPO-D-17-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., and M. J. McPhaden, 2015: Dynamics of the surface layer diurnal cycle in the equatorial Atlantic Ocean (0°, 23°W). J. Geophys. Res. Oceans, 120, 563581, https://doi.org/10.1002/2014JC010504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijesekera, H. W., and T. M. Dillon, 1991: Internal waves and mixing in the upper equatorial Pacific Ocean. J. Geophys. Res., 96, 7115, https://doi.org/10.1029/90JC02727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoder, J. A., S. G. Ackleson, R. T. Barber, P. Flament, and W. M. Balch, 1994: A line in the sea. Nature, 371, 689692, https://doi.org/10.1038/371689a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., and J. N. Moum, 2009: A new look at Richardson number mixing schemes for equatorial ocean modeling. J. Phys. Oceanogr., 39, 26522664, https://doi.org/10.1175/2009JPO4133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 484 0 0
Full Text Views 1406 733 231
PDF Downloads 819 255 10