• Belcher, S. E., and et al. , 2012: A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett., 39, https://doi.org/10.1029/2012GL052932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bou-Zeid, E., C. Meneveau, and M. Parlange, 2005: A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys. Fluids, 17, 025105, https://doi.org/10.1063/1.1839152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chamecki, M., C. Meneveau, and M. B. Parlange, 2008: A hybrid spectral/finite-volume algorithm for large-eddy simulation of scalars in the atmospheric boundary layer. Bound.-Layer Meteor., 128, 473484, https://doi.org/10.1007/s10546-008-9302-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chamecki, M., T. Chor, D. Yang, and C. Meneveau, 2019: Material transport in the ocean mixed layer: Recent developments enabled by large eddy simulations. Rev. Geophys., 57, 13381371, https://doi.org/10.1029/2019RG000655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B., D. Yang, C. Meneveau, and M. Chamecki, 2016: Effects of swell on transport and dispersion of oil plumes within the ocean mixed layer. J. Geophys. Res. Oceans, 121, 35643578, https://doi.org/10.1002/2015JC011380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chor, T., D. Yang, C. Meneveau, and M. Chamecki, 2018: A turbulence velocity scale for predicting the fate of buoyant materials in the oceanic mixed layer. Geophys. Res. Lett., 45, 11 81711 826, https://doi.org/10.1029/2018GL080296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chor, T., J. McWilliams, and M. Chamecki, 2020a: Empirical shapes for the publication “Modifications of the K-profile parameterization with nondiffusive fluxes for wave effects.” Zenodo, https://doi.org/10.5281/zenodo.4062665.

    • Crossref
    • Export Citation
  • Chor, T., J. C. McWilliams, and M. Chamecki, 2020b: Diffusive–nondiffusive flux decompositions in atmospheric boundary layers. J. Atmos. Sci., 77, 34793494, https://doi.org/10.1175/JAS-D-20-0093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corrsin, S., 1975: Limitations of gradient transport models in random walks and in turbulence. Turbulent Diffusion in Environmental Pollution, F. Frenkiel and R. Munn, Eds., Advances in Geophysics, Vol. 18, Elsevier, 25–60, https://doi.org/10.1016/S0065-2687(08)60451-3.

    • Crossref
    • Export Citation
  • Craik, A. D. D., and S. Leibovich, 1976: A rational model for Langmuir circulations. J. Fluid Mech., 73, 401426, https://doi.org/10.1017/S0022112076001420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J., 1966: The counter-gradient heat flux in the lower atmosphere and in the laboratory. J. Atmos. Sci., 23, 503506, https://doi.org/10.1175/1520-0469(1966)023<0503:TCGHFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., and S. E. Belcher, 2009: Characteristics of Langmuir turbulence in the ocean mixed layer. J. Phys. Oceanogr., 39, 18711887, https://doi.org/10.1175/2009JPO4119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., M. Levy, A. J. Adcroft, G. Danabasoglu, R. W. Hallberg, D. Jacobsen, W. Large, and T. Ringler, 2015: Theory and numerics of the community ocean vertical mixing (CVmix) project. CVMix Project Tech. Rep., 98 pp., https://github.com/CVMix/CVMix-description/blob/master/cvmix.pdf.

  • Harcourt, R. R., and E. A. D’Asaro, 2008: Large-eddy simulation of Langmuir turbulence in pure wind seas. J. Phys. Oceanogr., 38, 15421562, https://doi.org/10.1175/2007JPO3842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayaraman, B., and J. G. Brasseur, 2018: The surprising transition in atmospheric boundary layer turbulence structure from neutral to moderately convective stability states and mechanisms underlying large-scale rolls. arXiv, 38 pp., https://arxiv.org/abs/1807.03336.

  • Kaimal, J. C., J. C. Wyngaard, D. A. Haugen, O. R. Coté, Y. Izumi, S. J. Caughey, and C. J. Readings, 1976: Turbulence structure in the convective boundary layer. J. Atmos. Sci., 33, 21522169, https://doi.org/10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., E. G. Patton, A. K. DuVivier, P. P. Sullivan, and L. Romero, 2019a: Similarity theory in the surface layer of large-eddy simulations of the wind-, wave-, and buoyancy-forced southern ocean. J. Phys. Oceanogr., 49, 21652187, https://doi.org/10.1175/JPO-D-18-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., E. G. Patton, and P. P. Sullivan, 2019b: Nonlocal transport and implied viscosity and diffusivity throughout the boundary layer in les of the southern ocean with surface waves. J. Phys. Oceanogr., 49, 26312652, https://doi.org/10.1175/JPO-D-18-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., C. Garrett, and E. Skyllingstad, 2005: A regime diagram for classifying turbulent large eddies in the upper ocean. Deep-Sea Res. I, 52, 259278, https://doi.org/10.1016/j.dsr.2004.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., and B. Fox-Kemper, 2017: Assessing the effects of Langmuir turbulence on the entrainment buoyancy flux in the ocean surface boundary layer. J. Phys. Oceanogr., 47, 28632886, https://doi.org/10.1175/JPO-D-17-0085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., A. Webb, B. Fox-Kemper, A. Craig, G. Danabasoglu, W. G. Large, and M. Vertenstein, 2016: Langmuir mixing effects on global climate: WAVEWATCH III in CESM. Ocean Modell., 103, 145160, https://doi.org/10.1016/j.ocemod.2015.07.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., and et al. , 2019: Comparing ocean surface boundary vertical mixing schemes including Langmuir turbulence. J. Adv. Model. Earth Syst., 11, 35453592, https://doi.org/10.1029/2019MS001810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marlatt, S., S. Waggy, and S. Biringen, 2012: Direct numerical simulation of the turbulent Ekman layer: Evaluation of closure models. J. Atmos. Sci., 69, 11061117, https://doi.org/10.1175/JAS-D-11-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., P. P. Sullivan, and C.-H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130, https://doi.org/10.1017/S0022112096004375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., E. Huckle, J. Liang, and P. P. Sullivan, 2014: Langmuir turbulence in swell. J. Phys. Oceanogr., 44, 870890, https://doi.org/10.1175/JPO-D-13-0122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and P. P. Sullivan, 1994: A comparison of shear-and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51, 9991022, https://doi.org/10.1175/1520-0469(1994)051<0999:ACOSAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Brien, J. J., 1970: A note on the vertical structure of the eddy exchange coefficient in the planetary boundary layer. J. Atmos. Sci., 27, 12131215, https://doi.org/10.1175/1520-0469(1970)027<1213:ANOTVS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, S., 2000: Turbulent Flows. Cambridge University Press, 802 pp.

  • Reichl, B. G., D. Wang, T. Hara, I. Ginis, and T. Kukulka, 2016: Langmuir turbulence parameterization in tropical cyclone conditions. J. Phys. Oceanogr., 46, 863886, https://doi.org/10.1175/JPO-D-15-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salesky, S. T., M. Chamecki, and E. Bou-Zeid, 2017: On the nature of the transition between roll and cellular organization in the convective boundary layer. Bound.-Layer Meteor., 163, 4168, https://doi.org/10.1007/s10546-016-0220-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinha, N., A. E. Tejada-Martínez, C. Akan, and C. E. Grosch, 2015: Toward a K-profile parameterization of Langmuir turbulence in shallow coastal shelves. J. Phys. Oceanogr., 45, 28692895, https://doi.org/10.1175/JPO-D-14-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., E. D. Skyllingstad, G. B. Crawford, and H. Wijesekera, 2002: Nonlocal fluxes and Stokes drift effects in the K-profile parameterization. Ocean Dyn., 52, 104115, https://doi.org/10.1007/s10236-002-0012-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and J. C. McWilliams, 2010: Dynamics of winds and currents coupled to surface waves. Annu. Rev. Fluid Mech., 42, 1942, https://doi.org/10.1146/annurev-fluid-121108-145541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, Y., J.-R. Bidlot, A. C. Beljaars, and P. A. Janssen, 2010: Refinements to a prognostic scheme of skin sea surface temperature. J. Geophys. Res., 115, C06009, https://doi.org/10.1029/2009JC005985.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1922: Diffusion by continuous movements. Proc. London Math. Soc., s2–20, 196212, https://doi.org/10.1112/plms/s2-20.1.196.

  • Thorpe, S., 2004: Langmuir circulation. Annu. Rev. Fluid Mech., 36, 5579, https://doi.org/10.1146/annurev.fluid.36.052203.071431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Roekel, L., B. Fox-Kemper, P. Sullivan, P. Hamlington, and S. Haney, 2012: The form and orientation of Langmuir cells for misaligned winds and waves. J. Geophys. Res., 117, C05001, https://doi.org/10.1029/2011JC007516.

    • Search Google Scholar
    • Export Citation
  • Van Roekel, L., and et al. , 2018: The KPP boundary layer scheme for the ocean: Revisiting its formulation and benchmarking one-dimensional simulations relative to les. J. Adv. Model. Earth Syst., 10, 26472685, https://doi.org/10.1029/2018MS001336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., and R. A. Brost, 1984: Top-down and bottom-up diffusion of a scalar in the convective boundary layer. J. Atmos. Sci., 41, 102112, https://doi.org/10.1175/1520-0469(1984)041<0102:TDABUD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., B. Chen, M. Chamecki, and C. Meneveau, 2015: Oil plumes and dispersion in Langmuir, upper-ocean turbulence: Large-eddy simulations and K-profile parameterization. J. Geophys. Res. Oceans, 120, 47294759, https://doi.org/10.1002/2014JC010542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B., S. Sun, K. Yao, and K. Zhu, 2018: Reexamining the gradient and countergradient representation of the local and nonlocal heat fluxes in the convective boundary layer. J. Atmos. Sci., 75, 23172336, https://doi.org/10.1175/JAS-D-17-0198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 243 243 42
Full Text Views 54 54 6
PDF Downloads 75 75 6

Modifications to the K-Profile Parameterization with Nondiffusive Fluxes for Langmuir Turbulence

View More View Less
  • 1 University of California, Los Angeles, Los Angeles, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The K-profile parameterization (KPP) is a common method to model turbulent fluxes in regional and global oceanic models. Many versions of KPP exist in the oceanic sciences community, and one of their main differences is how they take the effects of nonbreaking waves into account. Although there is qualitative consensus that nonbreaking waves enhance vertical mixing due to the ensuing Langmuir circulations, there is no consensus on the quantitative aspects and modeling approach. In this paper we use a recently developed method to estimate both components of KPP (the diffusive term, usually called local, and the nondiffusive component, usually called nonlocal) based on numerically simulated turbulent fluxes without any a priori assumptions about their scaling or their shape. Through this method we show that the cubic shape usually used in KPP is not optimal for wavy situations and propose new ones. Furthermore, we show that the formulation for the nondiffusive fluxes, which currently only depend on the presence of surface buoyancy fluxes, should also take wave effects into account. We also investigate how the application of these changes to KPP improves the representation of turbulent fluxes in a diagnostic approach when compared with previous models.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-20-0250.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Chor’s current affiliation: Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland.

Corresponding author: Marcelo Chamecki, chamecki@ucla.edu

Abstract

The K-profile parameterization (KPP) is a common method to model turbulent fluxes in regional and global oceanic models. Many versions of KPP exist in the oceanic sciences community, and one of their main differences is how they take the effects of nonbreaking waves into account. Although there is qualitative consensus that nonbreaking waves enhance vertical mixing due to the ensuing Langmuir circulations, there is no consensus on the quantitative aspects and modeling approach. In this paper we use a recently developed method to estimate both components of KPP (the diffusive term, usually called local, and the nondiffusive component, usually called nonlocal) based on numerically simulated turbulent fluxes without any a priori assumptions about their scaling or their shape. Through this method we show that the cubic shape usually used in KPP is not optimal for wavy situations and propose new ones. Furthermore, we show that the formulation for the nondiffusive fluxes, which currently only depend on the presence of surface buoyancy fluxes, should also take wave effects into account. We also investigate how the application of these changes to KPP improves the representation of turbulent fluxes in a diagnostic approach when compared with previous models.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-20-0250.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Chor’s current affiliation: Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland.

Corresponding author: Marcelo Chamecki, chamecki@ucla.edu

Supplementary Materials

    • Supplemental Materials (PDF 257.38 KB)
Save