• Ambar, I., and M. Howe, 1979: Observations of the Mediterranean outflow—II The deep circulation in the vicinity of the Gulf of Cadiz. Deep-Sea Res., 26A, 555568, https://doi.org/10.1016/0198-0149(79)90096-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andres, M., J. Toole, D. Torres, W. Smethie, T. Joyce, and R. Curry, 2016: Stirring by deep cyclones and the evolution of Denmark Strait Overflow Water observed at line W. Deep-Sea Res. I, 109, 1026, https://doi.org/10.1016/j.dsr.2015.12.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Audi, G., O. Bersillon, J. Blachot, and A. Wapstra, 2003: The NUBASE evaluation of nuclear and decay properties. Nucl. Phys., 729, 3128, https://doi.org/10.1016/j.nuclphysa.2003.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baringer, M., and J. Price, 1997: Mixing and spreading of the Mediterranean outflow. J. Phys. Oceanogr., 27, 16541677, https://doi.org/10.1175/1520-0485(1997)027<1654:MASOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beal, L. M., and H. L. Bryden, 1999: The velocity and vorticity structure of the Agulhas Current at 32°S. J. Geophys. Res., 104, 51515176, https://doi.org/10.1029/1998JC900056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bevington, P. R., and D. K. Robinson, 1992: Data Reduction and Error Analysis for the Physical Sciences. 2nd ed. McGraw-Hill, 328 pp.

    • Crossref
    • Export Citation
  • Bower, A. S., and H. D. Hunt, 2000a: Lagrangian observations of the deep western boundary current in the North Atlantic Ocean. Part I: Large-scale pathways and spreading rates. J. Phys. Oceanogr., 30, 764783, https://doi.org/10.1175/1520-0485(2000)030<0764:LOOTDW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bower, A. S., and H. D. Hunt, 2000b: Lagrangian observations of the deep western boundary current in the North Atlantic Ocean. Part II: The Gulf Stream–deep western boundary current crossover. J. Phys. Oceanogr., 30, 784804, https://doi.org/10.1175/1520-0485(2000)030<0784:LOOTDW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., and Coauthors, 2013: World Ocean Database 2013. NOAA Atlas NESDIS 72, 209 pp., http://doi.org/10.7289/V5NZ85MT.

    • Crossref
    • Export Citation
  • Broecker, W. S., 1979: A revised estimate for the radiocarbon age of North Atlantic Deep Water. J. Geophys. Res., 84, 32183226, https://doi.org/10.1029/JC084iC06p03218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., S. Sutherland, W. Smethie, T.-H. Peng, and G. Ostlund, 1995: Oceanic radiocarbon: Separation of the natural and bomb components. Global Biogeochem. Cycles, 9, 263288, https://doi.org/10.1029/95GB00208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., H. R. Longworth, and S. A. Cuningham, 2005: Slowing of the Atlantic meridional overturning circulation at 25°N. Nature, 438, 655657, https://doi.org/10.1038/nature04385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckley, M., and J. Marshall, 2015: Observations, inferences, and mechanisms of the Atlantic meridional overturning circulation: A review. Rev. Geophys., 54, 563, https://doi.org/10.1002/2015RG000493

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campin, J.-M., T. Fichefet, and J.-C. Duplessy, 1999: Problems with using radiocarbon to infer ocean ventilation rates for past and present climates. Earth Planet. Sci. Lett., 165, 1724, https://doi.org/10.1016/S0012-821X(98)00255-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, M., and L. Keigwin, 2015: Radiocarbon profiles of the NW Pacific from the LGM and deglaciation: Evaluating ventilation metrics and the effect of uncertain surface reservoir ages. Paleoceanography, 30, 174195, https://doi.org/10.1002/2014PA002649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunningham, S., S. Alderson, B. King, and M. Brandon, 2003: Transport and variability of the Antarctic circumpolar current in Drake Passage. J. Geophys. Res., 108, 8084, https://doi.org/10.1029/2001JC001147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunningham, S., and et al. , 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science, 317, 935938, https://doi.org/10.1126/science.1141304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., and et al. , 2020: A parameterization of local and remote tidal mixing. J. Adv. Model. Earth Syst., 12, e2020MS002065, https://doi.org/10.1029/2020MS002065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demadron, D., and G. L. Weatherly, 1994: Circulation, transport and bottom boundary layers of the deep currents in the Brazil Basin. J. Mar. Res., 52, 583638, https://doi.org/10.1357/0022240943076975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeVries, T., and F. Primeau, 2011: Dynamically and observationally constrained estimates of water-mass distributions and ages in the global ocean. J. Phys. Oceanogr., 41, 23812401, https://doi.org/10.1175/JPO-D-10-05011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiadeiro, M. E., 1982: Three-dimensional modeling of tracers in the deep Pacific Ocean. II. Radiocarbon and the circulation. J. Mar. Res., 40, 537550.

    • Search Google Scholar
    • Export Citation
  • Fischer, J., and F. Schott, 1997: Seasonal transport variability of the deep western boundary current in the equatorial Atlantic. J. Geophys. Res., 102, 27 75127 769, https://doi.org/10.1029/97JC02327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, J., M. Rhein, F. Schott, and L. Stramma, 1996: Deep water masses and transports in the Vema Fracture Zone. Deep-Sea Res. I, 43, 10671074, https://doi.org/10.1016/0967-0637(96)00044-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedrichs, M., and M. Hall, 1993: Deep circulation in the tropical North Atlantic. J. Mar. Res., 51, 697736, https://doi.org/10.1357/0022240933223909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukumori, I., 2002: A partitioned Kalman filter and smoother. Mon. Wea. Rev., 130, 13701383, https://doi.org/10.1175/1520-0493(2002)130<1370:APKFAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., 2003: Error budget of inverse box models: The North Atlantic. J. Atmos. Oceanic Technol., 20, 16411655, https://doi.org/10.1175/1520-0426(2003)020<1641:EBOIBM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408, 453457, https://doi.org/10.1038/35044048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebbie, G., and P. Huybers, 2012: The mean age of ocean waters inferred from radiocarbon observations: Sensitivity to surface sources and accounting for mixing histories. J. Phys. Oceanogr., 42, 291305, https://doi.org/10.1175/JPO-D-11-043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, P., W. Murray, and M. Wright, 1986: Practical Optimization. Academic Press, 401 pp.

  • Groeskamp, S., B. Sloyan, J. Zika, and T. McDougall, 2017: Mixing inferred from an ocean climatology and surface fluxes. J. Phys. Oceanogr., 47, 667687, https://doi.org/10.1175/JPO-D-16-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groeskamp, S., J. LaCasce, T. McDougall, and M. Rogé, 2020: Full-depth global estimates of ocean mesoscale eddy mixing from observations and theory. Geophys. Res. Lett., 47, e2020GL089425, https://doi.org/10.1029/2020GL089425.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, M. M., M. McCartney, and J. A. Whitehead, 1997: Antarctic bottom water flux in the equatorial western Atlantic. J. Phys. Oceanogr., 27, 19031926, https://doi.org/10.1175/1520-0485(1997)027<1903:ABWFIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hautala, S., 2018: The abyssal and deep circulation of the northeast Pacific basin. Prog. Oceanogr., 160, 6882, https://doi.org/10.1016/j.pocean.2017.11.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, N. G., and W. E. Johns, 1995: Western boundary currents. Rev. Geophys., 33, 13111334, https://doi.org/10.1029/95RG00491.

  • Hogg, N. G., and W. B. Owens, 1999: Direct measurement of the deep circulation within the Brazil Basin. Deep-Sea Res. I, 46, 335353, https://doi.org/10.1016/S0967-0645(98)00097-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, N. G., P. Biscaye, W. Gardner, and W. J. Schmitz, 1982: On the transport and modification of Antarctic bottom water in the Vema Channel. J. Mar. Res., 40, 231263.

    • Search Google Scholar
    • Export Citation
  • Hogg, N. G., R. S. Pickart, R. M. Hendry, and W. J. Smethie, 1986: The northern recirculation gyre of the Gulf Stream. Deep-Sea Res., 33, 11391165, https://doi.org/10.1016/0198-0149(86)90017-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, N. G., G. Siedler, and W. Zenk, 1999: Circulation and variability at the southern boundary of the Brazil Basin. J. Phys. Oceanogr., 29, 145157, https://doi.org/10.1175/1520-0485(1999)029<0145:CAVATS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holzer, M., F. Primeau, W. Smethie, and S. Khatiwala, 2010: Where and how long ago was water in the western North Atlantic ventilated? Maximum entropy inversions of bottle data from WOCE line A20. J. Geophys. Res., 115, C07005, https://doi.org/10.1029/2009JC005750.

    • Search Google Scholar
    • Export Citation
  • Holzer, M., W. Smethie, and Y.-H. Ting, 2018: Ventilation of the subtropical North Atlantic: Locations and times of last ventilation estimated using tracer constraints from GEOTRACES section GA03. J. Geophys. Res. Oceans, 123, 23322352, https://doi.org/10.1002/2017JC013698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, E., D. R. Watts, and H. T. Rossby, 1989: A test of geostrophy in the Gulf Stream. J. Geophys. Res., 94, 32113222, https://doi.org/10.1029/JC094iC03p03211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, E., R. Fine, and R. Molinari, 1997: Deep flow along the western boundary south of the Blake Bahama Outer Ridge. J. Phys. Oceanogr., 27, 21872208, https://doi.org/10.1175/1520-0485(1997)027<2187:DFATWB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, T., J. Dunworth-Baker, R. Pickart, D. Torres, and S. Waterman, 2005: On the deep western boundary current south of Cape Cod. Deep-Sea Res. II, 52, 615625, https://doi.org/10.1016/j.dsr2.2004.12.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keigwin, L. D., 2004: Radiocarbon and stable isotope constraints on Last Glacial Maximum and Younger Dryas ventilation in the western North Atlantic. Paleoceanography, 19, PA4012, https://doi.org/10.1029/2004PA001029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Key, R., and et al. , 2004: A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). Global Biogeochem. Cycles, 18, GB4031, https://doi.org/10.1029/2004GB002247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khatiwala, S., F. Primeau, and M. Holzer, 2012: Ventilation of the deep ocean constrained with tracer observations and implications for radiocarbon estimates of ideal mean age. Earth Planet. Sci. Lett., 325-326, 116125, https://doi.org/10.1016/j.epsl.2012.01.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebedev, K., H. Yoshinari, N. Maximenko, and P. Hacker, 2007: YoMaHa’07: Velocity data assessed from trajectories of Argo floats at the parking level and at the sea surface. IPRC Tech. Note 4(2), 16 pp.

  • Le Bras, I., I. Yashayaev, and J. Toole, 2017: Tracking Labrador Sea water property signals along the deep western boundary current. J. Geophys. Res. Oceans, 122, 53485366, https://doi.org/10.1002/2017JC012921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Bras, I., S. Jayne, and J. Toole, 2018: The interaction of recirculation gyres and a deep boundary current. J. Phys. Oceanogr., 48, 573590, https://doi.org/10.1175/JPO-D-17-0206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeGrand, P., and C. Wunsch, 1995: Constraints from paleotracer data on the North Atlantic circulation during the last glacial maximum. Paleoceanography, 10, 10111045, https://doi.org/10.1029/95PA01455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lozier, S., and et al. , 2019: A sea change in our view of overturning in the subpolar North Atlantic. Science, 363, 516521, https://doi.org/10.1126/science.aau6592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2003: Large-scale vertical and horizontal circulation in the North Atlantic Ocean. J. Phys. Oceanogr., 33, 19021920, https://doi.org/10.1175/1520-0485(2003)033<1902:LVAHCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562, https://doi.org/10.1175/JPO3130.1.

  • Mackay, N., C. Wilson, N. P. Holliday, and J. D. Zika, 2020: The observation-based application of a regional thermohaline inverse method to diagnose the formation and transformation of water masses north of the OSNAP array from 2013 to 2015. J. Phys. Oceanogr., 50, 15331555, https://doi.org/10.1175/JPO-D-19-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchal, O., and J. Nycander, 2004: Nonuniform upwelling in a shallow-water model of the Antarctic Bottom Water in the Brazil basin. J. Phys. Oceanogr., 34, 24922513, https://doi.org/10.1175/JPO2643.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchal, O., and W. B. Curry, 2008: On the abyssal circulation in the glacial Atlantic. J. Phys. Oceanogr., 38, 20142037, https://doi.org/10.1175/2008JPO3895.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martel, F., and C. Wunsch, 1993: The North Atlantic circulation in the early 1980s—An estimate from inversion of a finite-difference model. J. Phys. Oceanogr., 23, 898924, https://doi.org/10.1175/1520-0485(1993)023<0898:TNACIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsumoto, K., 2007: Radiocarbon-based circulation age of the world oceans. J. Geophys. Res., 112, C09004, https://doi.org/10.1029/2007JC004095.

    • Search Google Scholar
    • Export Citation
  • McCarthy, G., and et al. , 2015: Measuring the Atlantic meridional overturning circulation at 26°N. Prog. Oceanogr., 130, 91111, https://doi.org/10.1016/j.pocean.2014.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCartney, M. S., and R. A. Curry, 1993: Transequatorial flow of Antarctic Bottom Water in the western Atlantic Ocean: Abyssal geostrophy at the equator. J. Phys. Oceanogr., 23, 12641276, https://doi.org/10.1175/1520-0485(1993)023<1264:TFOABW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCartney, M. S., S. L. Bennett, and M. E. Woodgate-Jones, 1991: Eastward flow through the mid-Atlantic Ridge at 11°N and its influence on the Abyss of the eastern basin. J. Phys. Oceanogr., 21, 10891121, https://doi.org/10.1175/1520-0485(1991)021<1089:EFTTMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinen, C., S. Garzoli, W. Johns, and M. Baringer, 2004: Transport variability of the deep western boundary current and the Antilles current off Abaca Island, Bahamas. Deep-Sea Res. I, 51, 13971415, https://doi.org/10.1016/j.dsr.2004.07.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinen, C., W. Johns, W. Garzoli, E. van Sebille, D. Rayner, T. Kanzow, and M. Baringer, 2013: Variability of the deep western boundary current at 26.5°N during 2004–2009. Deep-Sea Res. II, 85, 154168, https://doi.org/10.1016/j.dsr2.2012.07.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mercier, H., and K. Speer, 1998: Transport of bottom water in the Romanche fracture zone and the Chain fracture zone. J. Phys. Oceanogr., 28, 779790, https://doi.org/10.1175/1520-0485(1998)028<0779:TOBWIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mercier, H., M. Ollitraut, and P. Y. Le Traon, 1993: An inverse model of the North Atlantic general circulation using Lagrangian float data. J. Phys. Oceanogr., 23, 689715, https://doi.org/10.1175/1520-0485(1993)023<0689:AIMOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morris, M. Y., M. M. Hall, L. C. St. Laurent, and N. G. Hogg, 2001: Abyssal mixing in the Brazil basin. J. Phys. Oceanogr., 31, 33313348, https://doi.org/10.1175/1520-0485(2001)031<3331:AMITBB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCEI, 2006: 2-minute gridded global relief data (ETOPO2) v2. NOAA/National Centers for Environmental Information, accessed 25 July 2006, https://doi.org/10.7289/V5J1012Q.

    • Crossref
    • Export Citation
  • Ochoa, J., and N. A. Bray, 1991: Water mass exchange in the Gulf of Cadiz. Deep-Sea Res., 38, S465S503, https://doi.org/10.1016/S0198-0149(12)80021-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paillet, J., and H. Mercier, 1997: An inverse model of the eastern North Atlantic general circulation and thermocline ventilation. Deep-Sea Res. I, 44, 12931328, https://doi.org/10.1016/S0967-0637(97)00019-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer, 710 pp.

    • Crossref
    • Export Citation
  • Pedlosky, J., 1996: Ocean Circulation Theory. Springer, 453 pp.

    • Crossref
    • Export Citation
  • Pickart, R., and N. Hogg, 1989: A tracer study of the deep Gulf Stream cyclonic recirculation. Deep-Sea Res., 36, 935956, https://doi.org/10.1016/0198-0149(89)90036-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R., and W. Smethie, 1998: Temporal evolution of the deep western boundary current where it enters the sub-tropical domain. Deep-Sea Res. I, 45, 10531083, https://doi.org/10.1016/S0967-0637(97)00084-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R., M. A. Spall, and J. R. N. Lazier, 1997: Mid-depth ventilation in the western boundary current system of the sub-polar gyre. Deep-Sea Res. I, 44, 10251054, https://doi.org/10.1016/S0967-0637(96)00122-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhein, M., and H. Hinrichsen, 1993: Modification of Mediterranean Water in the Gulf of Cadiz, studied with hydrographic, nutrient and chlorofluoromethane data. Deep-Sea Res. I, 40, 267291, https://doi.org/10.1016/0967-0637(93)90004-M.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhein, M., L. Stramma, and G. Krahmann, 1998: The spreading of Antarctic Bottom Water in the tropical Atlantic. Deep-Sea Res. I, 45, 507527, https://doi.org/10.1016/S0967-0637(97)00030-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhein, M., D. Kieke, and R. Steinfeld, 2015: Advection of North Atlantic Deep Water from the Labrador Sea to the southern hemisphere. J. Geophys. Res. Oceans, 120, 24712487, https://doi.org/10.1002/2014JC010605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and C. Wunsch, 1985: Two transatlantic sections: Meridional circulation and heat flux in the subtropical North Atlantic Ocean. Deep-Sea Res., 32, 619664, https://doi.org/10.1016/0198-0149(85)90070-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rubin, S., and R. Key, 2002: Separating natural and bomb-produced radiocarbon in the ocean: The potential alkalinity method. Global Biogeochem. Cycles, 16, 1105, https://doi.org/10.1029/2001GB001432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sammartino, S., J. Lafuente, C. Naranjo, J. Sanchèz-Garrido, R. Sanchèz Leal, and A. Sanchèz-Roman, 2015: Ten years of marine current measurements in Espartel Sill, Strait of Gibraltar. J. Geophys. Res. Oceans, 120, 63096328, https://doi.org/10.1002/2014JC010674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandoval, F. J., and G. L. Weatherly, 2001: Evolution of the deep western boundary current of Antarctic Bottom Water in the Brazil basin. J. Phys. Oceanogr., 31, 14401460, https://doi.org/10.1175/1520-0485(2001)031<1440:EOTDWB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitz, W. J., 1995: On the interbasin-scale thermohaline circulation. Rev. Geophys., 33, 151173, https://doi.org/10.1029/95RG00879.

  • Schott, F., R. Zantopp, L. Stramma, M. Dengler, J. Fischer, and M. Wibaux, 2004: Circulation and deep-water export at the western exit of the subpolar North Atlantic. J. Phys. Oceanogr., 34, 817843, https://doi.org/10.1175/1520-0485(2004)034<0817:CADEAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F., M. Dengler, R. Zantopp, L. Stramma, J. Fischer, and P. Brandt, 2005: The shallow and deep western boundary circulation of the South Atlantic at 5°–11°S. J. Phys. Oceanogr., 35, 20312053, https://doi.org/10.1175/JPO2813.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, L., S. Fallon, C. Waelbroeck, E. Michel, and S. Barker, 2010: Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science, 328, 11471151, https://doi.org/10.1126/science.1183627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, L., C. Waelbroeck, A. Scrivner, and S. Fallon, 2014: Radiocarbon evidence for alternating northern and southern sources of ventilation of the deep Atlantic carbon pool during the last deglaciation. Proc. Natl. Acad. Sci. USA, 111, 54805484, https://doi.org/10.1073/pnas.1400668111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Speer, K. G., and M. S. McCartney, 1992: Bottom water circulation in the western North Atlantic. J. Phys. Oceanogr., 22, 8392, https://doi.org/10.1175/1520-0485(1992)022<0083:BWCITW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Speer, K. G., and W. Zenk, 1993: The flow of Antarctic Bottom Water into the Brazil basin. J. Phys. Oceanogr., 23, 26672682, https://doi.org/10.1175/1520-0485(1993)023<2667:TFOABW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, J. C., and D. P. Marshall, 2000: Dynamical pathways of Antarctic Bottom Water in the Atlantic. J. Phys. Oceanogr., 30, 622640, https://doi.org/10.1175/1520-0485(2000)030<0622:DPOABW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuiver, M., P. D. Quay, and H. G. Ostlund, 1983: Abyssal water carbon-14 distribution and the age of the world oceans. Science, 219, 849851, https://doi.org/10.1126/science.219.4586.849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2003: Shallow, intermediate, and deep overturning components of the global heat budgets. J. Phys. Oceanogr., 33, 530560, https://doi.org/10.1175/1520-0485(2003)033<0530:SIADOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., J. L. Reid, and P. E. Robbins, 2003: Data-based meridional overturning streamfunctions for the global ocean. J. Climate, 16, 32133226, https://doi.org/10.1175/1520-0442(2003)016<3213:DMOSFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., G. Pickard, W. Emery, and J. Swift, 2011: Descriptive Physical Oceanography: An Introduction. 6th ed. Elsevier, 555 pp.

    • Crossref
    • Export Citation
  • Toole, J., R. Curry, T. Joyce, M. McCartney, and B. Peña Molino, 2011: Transport of the North Atlantic deep western boundary current about 39°N, 70°W: 2004–2008. Deep-Sea Res. II, 58, 17681780, https://doi.org/10.1016/j.dsr2.2010.10.058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toole, J., M. Andres I. Le Bras, T. Joyce, and M. McCartney, 2017: Moored observations of the deep western boundary current in the NW Atlantic: 2004–2014. J. Geophys. Res. Oceans, 122, 74887505, https://doi.org/10.1002/2017JC012984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A., and et al. , 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, https://doi.org/10.1175/JPO-D-13-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weatherly, G., M. Arhan, H. Mercier, and W. Smethie, 2002: Evidence of abyssal eddies in the Brazil Basin. J. Geophys. Res., 107, 3027, https://doi.org/10.1029/2000JC000648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2006: Discrete Inverse and State Estimation Problems. Cambridge University Press, 371 pp.

    • Crossref
    • Export Citation
  • Wunsch, C., and P. Heimbach, 2013: Dynamically and kinematically consistent global ocean circulation and ice state estimates. Ocean Circulation and Climate, 2nd ed. G. Siedler et al., Eds., International Geophysics, Vol 103, Academic Press, 553–579, https://doi.org/10.1016/B978-0-12-391851-2.00021-0.

    • Crossref
    • Export Citation
  • Zenk, W., G. Siedler, B. Lenz, and N. Hogg, 1999: Antarctic Bottom Water flow though the Hunter Channel. J. Phys. Oceanogr., 29, 27852801, https://doi.org/10.1175/1520-0485(1999)029<2785:ABWFTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, N., O. Marchal, L. Keigwin, D. Amrhein, and G. Gebbie, 2018: A synthesis of deglacial deep-sea radiocarbon records and their (in)consistency with modern ocean circulation. Paleoceanogr. Paleoclimatol., 33, 128151, https://doi.org/10.1002/2017PA003174.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 151 150 31
Full Text Views 63 63 6
PDF Downloads 75 75 8

On the Estimation of Deep Atlantic Ventilation from Fossil Radiocarbon Records. Part I: Modern Reference Estimates

View More View Less
  • 1 a Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 2 b State Key Laboratory of Estuarine and Coastal Research and School of Marine Sciences, East China Normal University, Shanghai, China
  • | 3 c Max Planck Institute for Chemistry, Mainz, Germany
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Radiocarbon dates of fossil carbonates sampled from sediment cores and the seafloor have been used to infer that deep ocean ventilation during the last ice age was different from today. In this first of two companion papers, the time-averaged abyssal circulation in the modern Atlantic is estimated by combining a hydrographic climatology, observational estimates of volume transports, Argo float velocities at 1000 m, radiocarbon data, and geostrophic dynamics. Different estimates of modern circulation, obtained from different prior assumptions about the abyssal flow and different errors in the geostrophic balance, are produced for use in a robust interpretation of fossil records in terms of deviations from the present-day flow, which is undertaken in Part II. We find that, for all estimates, the meridional transport integrated zonally and averaged over a hemisphere, ⟨Vk⟩, is southward between 1000 and 4000 m in both hemispheres, northward between 4000 and 5000 m in the South Atlantic, and insignificant between 4000 and 5000 m in the North Atlantic. Estimates of ⟨Vk⟩ obtained from two distinct prior circulations—one based on a level of no motion at 4000 m and one based on Argo float velocities at 1000 m—become statistically indistinguishable when Δ14C data are considered. The transport time scale, defined as τk=Vk/Vk, where Vk is the volume of the kth layer, is estimated to about a century between 1000 and 3000 m in both the South and North Atlantic, 124 ± 9 yr (203 ± 23 yr) between 3000 and 4000 m in the South (North) Atlantic, and 269 ± 115 yr between 4000 and 5000 m in the South Atlantic.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Olivier Marchal, omarchal@whoi.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JPO-D-20-0314.1.

Abstract

Radiocarbon dates of fossil carbonates sampled from sediment cores and the seafloor have been used to infer that deep ocean ventilation during the last ice age was different from today. In this first of two companion papers, the time-averaged abyssal circulation in the modern Atlantic is estimated by combining a hydrographic climatology, observational estimates of volume transports, Argo float velocities at 1000 m, radiocarbon data, and geostrophic dynamics. Different estimates of modern circulation, obtained from different prior assumptions about the abyssal flow and different errors in the geostrophic balance, are produced for use in a robust interpretation of fossil records in terms of deviations from the present-day flow, which is undertaken in Part II. We find that, for all estimates, the meridional transport integrated zonally and averaged over a hemisphere, ⟨Vk⟩, is southward between 1000 and 4000 m in both hemispheres, northward between 4000 and 5000 m in the South Atlantic, and insignificant between 4000 and 5000 m in the North Atlantic. Estimates of ⟨Vk⟩ obtained from two distinct prior circulations—one based on a level of no motion at 4000 m and one based on Argo float velocities at 1000 m—become statistically indistinguishable when Δ14C data are considered. The transport time scale, defined as τk=Vk/Vk, where Vk is the volume of the kth layer, is estimated to about a century between 1000 and 3000 m in both the South and North Atlantic, 124 ± 9 yr (203 ± 23 yr) between 3000 and 4000 m in the South (North) Atlantic, and 269 ± 115 yr between 4000 and 5000 m in the South Atlantic.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Olivier Marchal, omarchal@whoi.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JPO-D-20-0314.1.

Save