• Cai, Z., and J. Gan, 2020: Dynamics of the cross-layer exchange for the layered circulation in the South China Sea. J. Geophys. Res. Oceans, 125, e2020JC016131, https://doi.org/10.1029/2020JC016131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, Z., J. Gan, Z. Liu, C. R. Hui, and J. Li, 2020: Progress on the formation dynamics of the layered circulation in the South China Sea. Prog. Oceanogr., 181, 102246, https://doi.org/10.1016/j.pocean.2019.102246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and H. Xue, 2014: Westward intensification in marginal seas. Ocean Dyn., 64, 337345, https://doi.org/10.1007/s10236-014-0691-z.

  • Chen, G., Y. Hou, and X. Chu, 2011: Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure. J. Geophys. Res., 116, C06018, https://doi.org/10.1029/2010JC006716.

    • Search Google Scholar
    • Export Citation
  • Chen, X., and K. Tung, 2014: Varying planetary heat sink led to global-warming slowdown and acceleration. Science, 345, 897903, https://doi.org/10.1126/science.1254937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummings, J. A., 2005: Operational multivariate ocean data assimilation. Quart. J. Roy. Meteor. Soc., 131, 35833604, https://doi.org/10.1256/qj.05.105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummings, J. A., and O. M. Smedstad, 2013: Variational data assimilation for the global ocean. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, Vol. II, Springer, 303–343.

    • Crossref
    • Export Citation
  • Gan, J., Z. Liu, and C. Hui, 2016: A three-layer alternating spinning circulation in the South China Sea. J. Phys. Oceanogr., 46, 23092315, https://doi.org/10.1175/JPO-D-16-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., B. A. Huber, E. J. Metzger, R. D. Susanto, H. E. Hurlburt, and T. R. Adi, 2012: South China Sea throughflow impact on the Indonesian Throughflow. Geophys. Res. Lett., 39, L11602, https://doi.org/10.1029/2012GL052021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, P., 1990: Deep currents in the Gulf of Mexico. J. Phys. Oceanogr., 20, 10871104, https://doi.org/10.1175/1520-0485(1990)020<1087:DCITGO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, P., 2007: Deep-current variability near the Sigsbee Escarpment in the Gulf of Mexico. J. Phys. Oceanogr., 37, 708726, https://doi.org/10.1175/JPO2998.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, P., 2009: Topographic Rossby waves in the Gulf of Mexico. Prog. Oceanogr., 82 (1), 131, https://doi.org/10.1016/j.pocean.2009.04.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, P., A. Bower, H. Furey, R. Leben, and P. Pérez-Brunius, 2019: The Loop Current: Observations of deep eddies and topographic waves. J. Phys. Oceanogr., 49, 14631483, https://doi.org/10.1175/JPO-D-18-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, N. G., 1981: Topographic waves along 70°W on the continental rise. J. Mar. Res., 39, 627649.

  • Hogg, N. G., 2000: Low-frequency variability on the western flanks of the Grand Banks. J. Mar. Res., 58, 523545, https://doi.org/10.1357/002224000321511007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X., Q. Wang, W. Zhou, and S. Zhou, 2017: Model diagnostic analysis of cross-shelf flow in the northern South China Sea (in Chinese with English abstract). Chin. Sci. Bull., 62, 10591070, https://doi.org/10.1360/N972016-00570.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, W. E., and D. R. Watts, 1986: Time scales and structure of topographic Rossby waves and meanders in the deep Gulf Stream. J. Mar. Res., 44, 267290, https://doi.org/10.1357/002224086788405356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawano, T., M. Fukasawa, S. Kouketsu, H. Uchida, T. Doi, I. Kaneko, M. Aoyama, and W. Schneider, 2006: Bottom water warming along the pathway of lower circumpolar deep water in the Pacific Ocean. Geophys. Res. Lett., 33, L23613, https://doi.org/10.1029/2006GL027933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., 1998: A geostrophic vortex over a slope. J. Phys. Oceanogr., 28, 23622381, https://doi.org/10.1175/1520-0485(1998)028<2362:AGVOAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., J. Escartin, E. P. Chassignet, and X. Xu, 2019: Jet instability over smooth, corrugated, and realistic bathymetry. J. Phys. Oceanogr., 49, 585605, https://doi.org/10.1175/JPO-D-18-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lan, J., N. Zhang, and Y. Wang, 2013: On the dynamics of the South China Sea deep circulation. J. Geophys. Res. Oceans, 118, 12061210, https://doi.org/10.1002/jgrc.20104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., J. Wei, D. Wang, A. L. Gordon, S. Yang, P. Malanotte-Rizzoli, and G. Jiang, 2019: Exploring the importance of the Mindoro-Sibutu pathway to the upper layer circulation of the South China Sea and the Indonesian Throughflow. J. Geophys. Res. Oceans, 124, 50545066, https://doi.org/10.1029/2018JC014910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X. S., 2016: Canonical transfer and multiscale energetics for primitive and quasigeostrophic atmospheres. J. Atmos. Sci., 73, 44394468, https://doi.org/10.1175/JAS-D-16-0131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., and D. G. M. Anderson, 2007: Multiscale window transform. Multiscale Model. Simul., 6, 437467, https://doi.org/10.1137/06066895X.

  • Luecke, C. A., and et al. , 2017: The global mesoscale eddy available potential energy field in models and observations. J. Geophys. Res. Oceans, 122, 91269143, https://doi.org/10.1002/2017JC013136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Q., F. Wang, J. Wang, and Y. Lyu, 2019: Intensified deep ocean variability induced by topographic Rossby waves at the Pacific Yap-Mariana Junction. J. Geophys. Res. Oceans, 124, 83608374, https://doi.org/10.1029/2019JC015490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magalhães, F. C., J. L. L. Azevedo, and L. R. Oliveira, 2017: Energetics of eddy-mean flow interactions in the Brazil Current between 20°S and 36°S. J. Geophys. Res. Oceans, 122, 61296146, https://doi.org/10.1002/2016JC012609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maslo, A., J. M. A. C. De Souza, and J. S. Pardo, 2020: Energetics of the deep Gulf of Mexico. J. Phys. Oceanogr., 50, 16551675, https://doi.org/10.1175/JPO-D-19-0308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinen, C., E. Fields, R. S. Pickart, and D. R. Watts, 1993: Ray tracing on topographic Rossby waves. University of Rhode Island Graduate School of Oceanography Tech. Rep. 93-1, 43 pp.

  • Nan, F., H. Xue, F. Chai, L. Shi, M. Shi, and P. Guo, 2011: Identification of different types of Kuroshio intrusion into the South China Sea. Ocean Dyn., 61, 12911304, https://doi.org/10.1007/s10236-011-0426-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nan, F., H. Xue, and F. Yu, 2015: Kuroshio intrusion into the South China Sea: A review. Prog. Oceanogr., 137, 314333, https://doi.org/10.1016/j.pocean.2014.05.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oey, L. Y., 2008: Loop Current and deep eddies. J. Phys. Oceanogr., 38, 14261449, https://doi.org/10.1175/2007JPO3818.1.

  • Oey, L. Y., and H. C. Lee, 2002: Deep eddy energy and topographic Rossby waves in the Gulf of Mexico. J. Phys. Oceanogr., 32, 34993527, https://doi.org/10.1175/1520-0485(2002)032<3499:DEEATR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olbers, D., J. Willebrand, and C. Eden, 2012: Ocean Dynamics. Spring-Verlag, 704 pp.

    • Crossref
    • Export Citation
  • Pedlosky, J., 2003: Waves in the Ocean and Atmosphere: Introduction to Wave Dynamics. Springer-Verlag, 260 pp.

    • Crossref
    • Export Citation
  • Peña-Molino, B., T. M. Joyce, and J. M. Toole, 2012: Variability in the deep western boundary current: Local versus remote forcing. J. Geophys. Res., 117, C12022, https://doi.org/10.1029/2012JC008369.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., 1995: Gulf Stream–generated topographic Rossby waves. J. Phys. Oceanogr., 25, 574586, https://doi.org/10.1175/1520-0485(1995)025<0574:GSTRW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., and D. R. Watts, 1990: Deep western boundary current variability at Cape Hatteras. J. Mar. Res., 48, 765791, https://doi.org/10.1357/002224090784988674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., Y. Du, and H. Sasaki, 2006: South China Sea throughflow: A heat and freshwater conveyor. Geophys. Res. Lett., 33, L23617, https://doi.org/10.1029/2006GL028350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quan, Q., and H. Xue, 2018: Layered model and insights into the vertical coupling of the South China Sea circulation in the upper and middle layers. Ocean Modell., 129, 7592, https://doi.org/10.1016/j.ocemod.2018.06.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quan, Q., and H. Xue, 2019: Influence of abyssal mixing on the multilayer circulation in the South China Sea. J. Phys. Oceanogr., 49, 30453060, https://doi.org/10.1175/JPO-D-19-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, R., and O. Wang, 2004: Bottom-trapped Rossby waves in an exponentially stratified ocean. J. Phys. Oceanogr., 34, 961967, https://doi.org/10.1175/1520-0485(2004)034<0961:BRWIAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1970: Edge-, bottom-, and Rossby waves in a rotating stratified fluid. Geophys. Fluid Dyn., 1, 273302, https://doi.org/10.1080/03091927009365776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., and F. Bretherton, 1973: Topographic Rossby waves in a rough-bottomed ocean. J. Fluid Mech., 61, 583607, https://doi.org/10.1017/S002211207300087X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siedler, G., J. Holfort, W. Zenk, T. J. Müller, and T. Csernok, 2004: Deep-water flow in the Mariana and Caroline Basins. J. Phys. Oceanogr., 34, 566581, https://doi.org/10.1175/2511.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shu, Y., H. Xue, D. Wang, F. Chai, Q. Xie, J. Yao, and J. Xiao, 2014: Meridional overturning circulation in the South China Sea envisioned from the high-resolution global reanalysis data GLBa0.08. J. Geophys. Res. Oceans, 119, 30123028, https://doi.org/10.1002/2013JC009583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shu, Y., and et al. , 2016: Persistent and energetic bottom-trapped topographic Rossby waves observed in the southern South China Sea. Sci. Rep., 6, 24338, https://doi.org/10.1038/srep24338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. O. R. Y., 1977: Observations of Rossby waves near site D. Prog. Oceanogr., 7, 135162, https://doi.org/10.1016/0079-6611(77)90003-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. O. R. Y., and J. Luyten, 1976: Evidence for bottom-trapped topographic Rossby waves from single moorings. Deep-Sea Res., 23, 629635, https://doi.org/10.1016/0011-7471(76)90005-X.

    • Search Google Scholar
    • Export Citation
  • Wang, D. P., and C. N. K. Mooers, 1976: Coastal-trapped waves in a continuously stratified ocean. J. Phys. Oceanogr., 6, 853863, https://doi.org/10.1175/1520-0485(1976)006<0853:CTWIAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D. X., J. Xiao, Y. Shu, Q. Xie, J. Chen, and Q. Wang, 2016: Progress on deep circulation and meridional overturning circulation in the South China Sea. Sci. Chin, 59, 18271833, https://doi.org/10.1007/s11430-016-5324-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., S. Xie, T. Qu, and R. Huang, 2011: Deep South China Sea circulation. Geophys. Res. Lett., 38, L05601, https://doi.org/10.1029/2010GL046626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Q., and et al. , 2019: Energetic topographic Rossby waves in the northern South China Sea. J. Phys. Oceanogr., 49, 26972714, https://doi.org/10.1175/JPO-D-18-0247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, Q., J. Xiao, D. Wang, and Y. Yu, 2013: Analysis of deep-layer and bottom circulations in the South China Sea based on eight quasi-global ocean model outputs. Chin. Sci. Bull., 58, 40004011, https://doi.org/10.1007/s11434-013-5791-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiu, P., F. Chai, L. Shi, H. Xue, and Y. Chao, 2010: A census of eddy activities in the South China Sea during 1993–2007. J. Geophys. Res., 115, C03012, https://doi.org/10.1029/2009JC005657.

    • Search Google Scholar
    • Export Citation
  • Xu, F., and L. Y. Oey, 2014: State analysis using the Local Ensemble Transform Kalman Filter (LETKF) and the three-layer circulation structure of the Luzon Strait and the South China Sea. Ocean Dyn., 64, 905923, https://doi.org/10.1007/s10236-014-0720-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., and X. S. Liang, 2018: On the seasonal eddy variability in the Kuroshio Extension. J. Phys. Oceanogr., 48, 16751689, https://doi.org/10.1175/JPO-D-18-0058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., R. H. Weisberg, Y. Liu, and X. S. Liang, 2020: Instabilities and multiscale interactions underlying the Loop Current eddy shedding in the Gulf of Mexico. J. Phys. Oceanogr., 50, 12891317, https://doi.org/10.1175/JPO-D-19-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Z., S. Shen, J. P. McCreary, M. Yaremchuk, and R. Furue, 2007: South China Sea throughflow as evidenced by satellite images and numerical experiments. Geophys. Res. Lett., 34, L01601, https://doi.org/10.1029/2006GL028103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., W. Zhao, B. Qiu, and J. Tian, 2017: Anticyclonic eddy sheddings from Kuroshio Loop and the accompanying cyclonic eddy in the northeastern South China Sea. J. Phys. Oceanogr., 47, 12431259, https://doi.org/10.1175/JPO-D-16-0185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, B., and M.-L. Timmermans, 2018: Topographic Rossby waves in the Arctic Ocean’s Beaufort Gyre. J. Geophys. Res. Oceans, 123, 65216530, https://doi.org/10.1029/2018JC014233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, C., W. Zhao, J. Tian, X. Zhao, Y. Zhu, Q. Yang, and T. Qu, 2017: Deep western boundary current in the South China Sea. Sci. Rep., 7, 9303, https://doi.org/10.1038/s41598-017-09436-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., J. Sun, Y. Wang, Z. Wei, D. Yang, and T. Qu, 2017: Effect of potential vorticity flux on the circulation in the South China Sea. J. Geophys. Res. Oceans, 122, 64546469, https://doi.org/10.1002/2016JC012375.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 219 219 20
Full Text Views 144 144 14
PDF Downloads 191 191 26

Topographic Rossby Waves in the Abyssal South China Sea

View More View Less
  • 1 a Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
  • | 2 b State Key Laboratory of Internet of Things for Smart City, and Department of Civil and Environmental Engineering, University of Macau, Macau, China
  • | 3 c Center for Ocean Research in Hong Kong and Macau, Macau, China
  • | 4 d College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Topographic Rossby waves (TRWs) in the abyssal South China Sea (SCS) are investigated using observations and high-resolution numerical simulations. These energetic waves can account for over 40% of the kinetic energy (KE) variability in the deep western boundary current and seamount region in the central SCS. This proportion can even reach 70% over slopes in the northern and southern SCS. The TRW-induced currents exhibit columnar (i.e., in phase) structure in which the speed increases downward. Wave properties such as the period (5–60 days), wavelength (100–500 km), and vertical trapping scale (102–103 m) vary significantly depending on environmental parameters of the SCS. The TRW energy propagates along steep topography with phase propagation offshore. TRWs with high frequencies exhibit a stronger climbing effect than low-frequency ones and hence can move further upslope. For TRWs with a certain frequency, the wavelength and trapping scale are dominated by the topographic beta, whereas the group velocity is more sensitive to the internal Rossby deformation radius. Background circulation with horizontal shear can change the wavelength and direction of TRWs if the flow velocity is comparable to the group velocity, particularly in the central, southern, and eastern SCS. A case study suggests two possible energy sources for TRWs: mesoscale perturbation in the upper layer and large-scale background circulation in the deep layer. The former provides KE by pressure work, whereas the latter transfers the available potential energy (APE) through baroclinic instability.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhiqiang Liu, liuzq@sustech.edu.cn

Abstract

Topographic Rossby waves (TRWs) in the abyssal South China Sea (SCS) are investigated using observations and high-resolution numerical simulations. These energetic waves can account for over 40% of the kinetic energy (KE) variability in the deep western boundary current and seamount region in the central SCS. This proportion can even reach 70% over slopes in the northern and southern SCS. The TRW-induced currents exhibit columnar (i.e., in phase) structure in which the speed increases downward. Wave properties such as the period (5–60 days), wavelength (100–500 km), and vertical trapping scale (102–103 m) vary significantly depending on environmental parameters of the SCS. The TRW energy propagates along steep topography with phase propagation offshore. TRWs with high frequencies exhibit a stronger climbing effect than low-frequency ones and hence can move further upslope. For TRWs with a certain frequency, the wavelength and trapping scale are dominated by the topographic beta, whereas the group velocity is more sensitive to the internal Rossby deformation radius. Background circulation with horizontal shear can change the wavelength and direction of TRWs if the flow velocity is comparable to the group velocity, particularly in the central, southern, and eastern SCS. A case study suggests two possible energy sources for TRWs: mesoscale perturbation in the upper layer and large-scale background circulation in the deep layer. The former provides KE by pressure work, whereas the latter transfers the available potential energy (APE) through baroclinic instability.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhiqiang Liu, liuzq@sustech.edu.cn
Save