• Belcher, S. E., and et al. , 2012: A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett., 39, L18605, https://doi.org/10.1029/2012GL052932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booij, N., L. Holthuijsen, and R. Ris, 1997: The “SWAN” wave model for shallow water. Coastal Eng., 1996, 668676, https://doi.org/10.1061/9780784402429.053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craik, A. D., and S. Leibovich, 1976: A rational model for Langmuir circulations. J. Fluid Mech., 73, 401426, https://doi.org/10.1017/S0022112076001420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2001: Turbulent vertical kinetic energy in the ocean mixed layer. J. Phys. Oceanogr., 31, 35303537, https://doi.org/10.1175/1520-0485(2002)031<3530:TVKEIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2014: Turbulence in the upper-ocean mixed layer. Annu. Rev. Mar. Sci., 6, 101115, https://doi.org/10.1146/annurev-marine-010213-135138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., J. Thomson, A. Shcherbina, R. Harcourt, M. Cronin, M. Hemer, and B. Fox-Kemper, 2014: Quantifying upper ocean turbulence driven by surface waves. Geophys. Res. Lett., 41, 102107, https://doi.org/10.1002/2013GL058193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., J. Hamilton, and W. Hui, 1985: Directional spectra of wind-generated ocean waves. Philos. Trans. Roy. Soc. London, 315A, 509562, https://doi.org/10.1098/rsta.1985.0054.

    • Search Google Scholar
    • Export Citation
  • Ekman V. W., 1905: On the influence of the Earth’s rotation on ocean-currents. Ark. Mat. Astron. Fys., 2, 152.

  • Farmer, D., and M. Li, 1995: Patterns of bubble clouds organized by Langmuir circulation. J. Phys. Oceanogr., 25, 14261440, https://doi.org/10.1175/1520-0485(1995)025<1426:POBCOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gargett, A., J. Wells, A. Tejada-Martinez, and C. Grosch, 2004: Langmuir supercells: A mechanism for sediment resuspension and transport in shallow seas. Science, 306, 19251928, https://doi.org/10.1126/science.1100849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., 2013: A second-moment closure model of Langmuir turbulence. J. Phys. Oceanogr., 43, 673697, https://doi.org/10.1175/JPO-D-12-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., 2015: An improved second-moment closure model of Langmuir turbulence. J. Phys. Oceanogr., 45, 84103, https://doi.org/10.1175/JPO-D-14-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., and E. A. D’Asaro, 2008: Large-eddy simulation of Langmuir turbulence in pure wind seas. J. Phys. Oceanogr., 38, 15421562, https://doi.org/10.1175/2007JPO3842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L., A. Kuik, and E. Mosselman, 1987: The response of wave directions to changing wind directions. J. Phys. Oceanogr., 17, 845853, https://doi.org/10.1175/1520-0485(1987)017<0845:TROWDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kantha, L. H., and C. A. Clayson, 1994: An improved mixed layer model for geophysical applications. J. Geophys. Res., 99, 25 23525 266, https://doi.org/10.1029/94JC02257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kenyon, K. E., 1969: Stokes drift for random gravity waves. J. Geophys. Res., 74, 69916994, https://doi.org/10.1029/JC074i028p06991.

  • Kukulka, T., and R. R. Harcourt, 2017: Influence of Stokes drift decay scale on Langmuir turbulence. J. Phys. Oceanogr., 47, 16371656, https://doi.org/10.1175/JPO-D-16-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kukulka, T., A. J. Plueddemann, J. H. Trowbridge, and P. P. Sullivan, 2009: Significance of Langmuir circulation in upper ocean mixing: Comparison of observations and simulations. Geophys. Res. Lett., 36, L10603, https://doi.org/10.1029/2009GL037620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kukulka, T., A. J. Plueddemann, and P. P. Sullivan, 2013: Inhibited upper ocean restratification in nonequilibrium swell conditions. Geophys. Res. Lett., 40, 36723676, https://doi.org/10.1002/grl.50708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langmuir, I., 1938: Surface motion of water induced by wind. Science, 87, 119123, https://doi.org/10.1126/science.87.2250.119.

  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, D., and S. Belcher, 2004: Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans, 37, 313351, https://doi.org/10.1016/j.dynatmoce.2003.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., C. Garrett, and E. Skyllingstad, 2005: A regime diagram for classifying turbulent large eddies in the upper ocean. Deep-Sea Res. I, 52, 259278, https://doi.org/10.1016/j.dsr.2004.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., B. Fox-Kemper, Ø. Breivik, and A. Webb, 2017: Statistical models of global Langmuir mixing. Ocean Modell., 113, 95114, https://doi.org/10.1016/j.ocemod.2017.03.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., and et al. , 2019: Comparing ocean surface boundary vertical mixing schemes including Langmuir turbulence. J. Adv. Model. Earth Syst., 11, 35453592, https://doi.org/10.1029/2019MS001810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madsen, O. S., 1977: A realistic model of the wind-induced Ekman boundary layer. J. Phys. Oceanogr., 7, 248255, https://doi.org/10.1175/1520-0485(1977)007<0248:ARMOTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and P. P. Sullivan, 2000: Vertical mixing by Langmuir circulations. Spill Sci. Technol. Bull., 6, 225237, https://doi.org/10.1016/S1353-2561(01)00041-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., P. P. Sullivan, and C.-H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130, https://doi.org/10.1017/S0022112096004375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., E. Huckle, J.-H. Liang, and P. P. Sullivan, 2012: The wavy Ekman layer: Langmuir circulations, breaking waves, and Reynolds stress. J. Phys. Oceanogr., 42, 17931816, https://doi.org/10.1175/JPO-D-12-07.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., E. Huckle, J. Liang, and P. P. Sullivan, 2014: Langmuir turbulence in swell. J. Phys. Oceanogr., 44, 870890, https://doi.org/10.1175/JPO-D-13-0122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 20522062, https://doi.org/10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearson, B., 2018: Turbulence-induced anti-Stokes flow and the resulting limitations of large-eddy simulation. J. Phys. Oceanogr., 48, 117122, https://doi.org/10.1175/JPO-D-17-0208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., P. B. Rhines, and R. O. Thompson, 1973: The deepening of the wind-mixed layer. Geophys. Fluid Dyn., 4, 381404, https://doi.org/10.1080/03091927208236105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polton, J. A., and S. E. Belcher, 2007: Langmuir turbulence and deeply penetrating jets in an unstratified mixed layer. J. Geophys. Res., 112, C09020, https://doi.org/10.1029/2007JC004205.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., and M. A. Sundermeyer, 1999: Stratified Ekman layers. J. Geophys. Res., 104, 20 46720 494, https://doi.org/10.1029/1999JC900164.

  • Price, J. F., R. A. Weller, and R. R. Schudlich, 1987: Wind-driven ocean currents and Ekman transport. Science, 238, 15341538, https://doi.org/10.1126/science.238.4833.1534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabe, T. J., T. Kukulka, I. Ginis, T. Hara, B. G. Reichl, E. A. D’Asaro, R. R. Harcourt, and P. P. Sullivan, 2015: Langmuir turbulence under Hurricane Gustav (2008). J. Phys. Oceanogr., 45, 657677, https://doi.org/10.1175/JPO-D-14-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichl, B. G., and Q. Li, 2019: A parameterization with a constrained potential energy conversion rate of vertical mixing due to Langmuir turbulence. J. Phys. Oceanogr., 49, 29352959, https://doi.org/10.1175/JPO-D-18-0258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichl, B. G., D. Wang, T. Hara, I. Ginis, and T. Kukulka, 2016: Langmuir turbulence parameterization in tropical cyclone conditions. J. Phys. Oceanogr., 46, 863886, https://doi.org/10.1175/JPO-D-15-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., and D. W. Denbo, 1995: An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. J. Geophys. Res., 100, 85018522, https://doi.org/10.1029/94JC03202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., W. Smyth, and G. Crawford, 2000: Resonant wind-driven mixing in the ocean boundary layer. J. Phys. Oceanogr., 30, 18661890, https://doi.org/10.1175/1520-0485(2000)030<1866:RWDMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and J. C. McWilliams, 2010: Dynamics of winds and currents coupled to surface waves. Annu. Rev. Fluid Mech., 42, 1942, https://doi.org/10.1146/annurev-fluid-121108-145541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., L. Romero, J. C. McWilliams, and W. K. Melville, 2012: Transient evolution of Langmuir turbulence in ocean boundary layers driven by hurricane winds and waves. J. Phys. Oceanogr., 42, 19591980, https://doi.org/10.1175/JPO-D-12-025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S., 2004: Langmuir circulation. Annu. Rev. Fluid Mech., 36, 5579, https://doi.org/10.1146/annurev.fluid.36.052203.071431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Umlauf, L., and H. Burchard, 2005: Second-order turbulence closure models for geophysical boundary layers: A review of recent work. Cont. Shelf Res., 25, 795827, https://doi.org/10.1016/j.csr.2004.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Roekel, L., B. Fox-Kemper, P. Sullivan, P. Hamlington, and S. Haney, 2012: The form and orientation of Langmuir cells for misaligned winds and waves. J. Geophys. Res., 117, C05001, https://doi.org/10.1029/2011JC007516.

    • Search Google Scholar
    • Export Citation
  • van Vledder, G. P., and L. Holthuijsen, 1993: The directional response of ocean waves to turning winds. J. Phys. Oceanogr., 23, 177192, https://doi.org/10.1175/1520-0485(1993)023<0177:TDROOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., T. Kukulka, B. G. Reichl, T. Hara I. Ginis, and P. P. Sullivan, 2018: Interaction of Langmuir turbulence and inertial currents in the ocean surface boundary layer under tropical cyclones. J. Phys. Oceanogr., 48, 19211940, https://doi.org/10.1175/JPO-D-17-0258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., T. Kukulka, B. G. Reichl, T. Hara, and I. Ginis, 2019: Wind–wave misalignment effects on Langmuir turbulence in tropical cyclone conditions. J. Phys. Oceanogr., 49, 31093126, https://doi.org/10.1175/JPO-D-19-0093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I., and L. Verhagen, 1996: The growth of fetch limited waves in water of finite depth. Part I. Total energy and peak frequency. Coast. Eng., 29, 4778, https://doi.org/10.1016/S0378-3839(96)00006-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I., S. Hasselmann, and K. Hasselmann, 1987: Computations of the response of a wave spectrum to a sudden change in wind direction. J. Phys. Oceanogr., 17, 13171338, https://doi.org/10.1175/1520-0485(1987)017<1317:COTROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 117 117 19
Full Text Views 62 62 13
PDF Downloads 93 93 25

Ocean Surface Boundary Layer Response to Abruptly Turning Winds

View More View Less
  • 1 a University of Delaware, Newark, Delaware
© Get Permissions
Restricted access

Abstract

Turbulence driven by wind and waves controls the transport of heat, momentum, and matter in the ocean surface boundary layer (OSBL). For realistic ocean conditions, winds and waves are often neither aligned nor constant, for example, when winds turn rapidly. Using a large-eddy simulation (LES) method, which captures shear-driven turbulence (ST) and Langmuir turbulence (LT) driven by the Craik–Leibovich vortex force, we investigate the OSBL response to abruptly turning winds. We design idealized LES experiments in which winds are initially constant to equilibrate OSBL turbulence before abruptly turning 90° either cyclonically or anticyclonically. The transient Stokes drift for LT is estimated from a spectral wave model. The OSBL response includes three successive stages that follow the change in direction. During stage 1, turbulent kinetic energy (TKE) decreases as a result of reduced TKE production. Stage 2 is characterized by TKE increasing, with TKE shear production recovering and exceeding TKE dissipation. Transient TKE levels may exceed their stationary values because of inertial resonance and nonequilibrium turbulence. Turbulence relaxes to its equilibrium state at stage 3, but LT still adjusts as a result of slowly developing waves. During stages 1 and 2, greatly misaligned wind and waves lead to Eulerian shear TKE production exceeding Stokes drift shear TKE production. A Reynolds stress budget analysis and Reynolds-averaged Navier–Stokes equation models indicate that Stokes drift shear production furthermore drives the OSBL response. The Coriolis effects result in asymmetrical OSBL responses to wind turning directions. Our results suggest that transient wind conditions play a key role in understanding realistic OSBL dynamics.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xingchi Wang, wangxch@udel.edu

Abstract

Turbulence driven by wind and waves controls the transport of heat, momentum, and matter in the ocean surface boundary layer (OSBL). For realistic ocean conditions, winds and waves are often neither aligned nor constant, for example, when winds turn rapidly. Using a large-eddy simulation (LES) method, which captures shear-driven turbulence (ST) and Langmuir turbulence (LT) driven by the Craik–Leibovich vortex force, we investigate the OSBL response to abruptly turning winds. We design idealized LES experiments in which winds are initially constant to equilibrate OSBL turbulence before abruptly turning 90° either cyclonically or anticyclonically. The transient Stokes drift for LT is estimated from a spectral wave model. The OSBL response includes three successive stages that follow the change in direction. During stage 1, turbulent kinetic energy (TKE) decreases as a result of reduced TKE production. Stage 2 is characterized by TKE increasing, with TKE shear production recovering and exceeding TKE dissipation. Transient TKE levels may exceed their stationary values because of inertial resonance and nonequilibrium turbulence. Turbulence relaxes to its equilibrium state at stage 3, but LT still adjusts as a result of slowly developing waves. During stages 1 and 2, greatly misaligned wind and waves lead to Eulerian shear TKE production exceeding Stokes drift shear TKE production. A Reynolds stress budget analysis and Reynolds-averaged Navier–Stokes equation models indicate that Stokes drift shear production furthermore drives the OSBL response. The Coriolis effects result in asymmetrical OSBL responses to wind turning directions. Our results suggest that transient wind conditions play a key role in understanding realistic OSBL dynamics.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xingchi Wang, wangxch@udel.edu
Save