• Andersson, A., K. Fennig, C. Klepp, S. Bakan, H. Grassl, and J. Schulz, 2010: The Hamburg Ocean atmosphere parameters and fluxes from satellite data – HOAPS-3. Earth Syst. Sci. Data, 2, 215234, https://doi.org/10.5194/essd-2-215-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ascani, F., E. Firing, P. Dutrieux, J. P. McCreary, and A. Ishida, 2010: Deep equatorial ocean circulation induced by a forced dissipated Yanai beam. J. Phys. Oceanogr., 40, 11181142, https://doi.org/10.1175/2010JPO4356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnier, B., L. Siefried, and P. Marchesiello, 1995: Thermal forcing for a global ocean circulation model using a three-year climatology of ECMWF analyses. J. Mar. Syst., 6, 363380, https://doi.org/10.1016/0924-7963(94)00034-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, J. J., D. T. Sandwell, W. H. F. Smith, and J. Braud, 2009: Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30 _ PLUS. Mar. Geod., 32, 355371, https://doi.org/10.1080/01490410903297766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beckmann, A., and D. B. Haidvogel, 1993: Numerical simulation of flow around a tall isolated seamount. Part I: Problem formulation and model accuracy. J. Phys. Oceanogr., 23, 17361753, https://doi.org/10.1175/1520-0485(1993)023<1736:NSOFAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). J. Phys. Oceanogr., 136, 29993017, https://doi.org/10.1175/2007MWR1978.1.

    • Search Google Scholar
    • Export Citation
  • Conkright, M., R. A. Locarnini, H. Garcia, T. O’Brien, T. Boyer, C. Stephens, and J. Antonov, 2002: World Ocean Atlas 2001: Objective analyses, data statistics, and figures. National Oceanographic Data Center Internal Rep. 17, CD-ROM documentation, 17 pp.

  • Cox, M., 1980: Generation and propagation of 30-day waves in a numerical model of the Pacific. J. Phys. Oceanogr., 10, 11681186, https://doi.org/10.1175/1520-0485(1980)010<1168:GAPODW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cravatte, S., E. Kestenare, F. Marin, P. Dutrieux, and E. Firing, 2017: Subthermocline and intermediate zonal currents in the tropical Pacific Ocean: Paths and vertical structure. J. Phys. Oceanogr., 47, 23052324, https://doi.org/10.1175/JPO-D-17-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Debreu, L., P. Marchesiello, P. Penven, and G. Cambon, 2012: Two-way nesting in split-explicit ocean models: Algorithms, implementation and validation. Ocean Modell., 49–50, 121, https://doi.org/10.1016/j.ocemod.2012.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delorme, B. L., and L. N. Thomas, 2019: Abyssal mixing through critical reflection of equatorially trapped waves off smooth topography. J. Phys. Oceanogr., 49, 519542, https://doi.org/10.1175/JPO-D-18-0197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durland, T. S., and J. T. Farrar, 2012: The wavenumber-frequency content of resonantly excited equatorial waves. J. Phys. Oceanogr., 42, 18341858, https://doi.org/10.1175/JPO-D-11-0234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrar, J. T., 2008: Observations of the dispersion characteristics and meridional sea level structure of equatorial waves in the Pacific Ocean. J. Phys. Oceanogr., 38, 16691689, https://doi.org/10.1175/2007JPO3890.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrar, J. T., and T. S. Durland, 2012: Wavenumber–frequency spectra of inertia–gravity and mixed Rossby–gravity waves in the equatorial Pacific Ocean. J. Phys. Oceanogr., 42, 18591881, https://doi.org/10.1175/JPO-D-11-0235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., 2014: What goes down must come up. Nature, 513, 179180, https://doi.org/10.1038/513179a.

  • Gerkema, T., and V. I. Shrira, 2005: Near-inertial waves on the “nontraditional” β plane. J. Geophys. Res., 110, C01003, https://doi.org/10.1029/2004JC002519.

    • Search Google Scholar
    • Export Citation
  • Gerkema, T., J. T. Zimmerman, L. R. Maas, and H. Van Haren, 2008: Geophysical and astrophysical fluid dynamics beyond the traditional approximation. Rev. Geophys., 46, RG2004, https://doi.org/10.1029/2006RG000220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., J. M. Molemaker, and J. C. McWilliams, 2015: Gulf stream dynamics along the southeastern U. S. seaboard. J. Phys. Oceanogr., 45, 690715, https://doi.org/10.1175/JPO-D-14-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, R. M., J. N. Moum, and L. N. Thomas, 2016: Evidence for seafloor-intensified mixing by surface-generated equatorial waves. Geophys. Res. Lett., 43, 12021210, https://doi.org/10.1002/2015GL066472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jullien, S., and et al. , 2019: CROCO’S technical and numerical documentation. Tech. Rep., CNRS-Ifremer-Inria-IRD-SHOM, 142 pp.

  • Kelly, B. G., S. D. Meyers, and J. J. O’Brien, 1995: On a generating mechanism for Yanai waves and the 25-day oscillation. J. Geophys. Res., 100, 10 58910 612, https://doi.org/10.1029/94JC02911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., and J. P. McCreary, 1993: The annual wind-driven Rossby wave in the subthermocline equatorial Pacific. J. Phys. Oceanogr., 23, 11921207, https://doi.org/10.1175/1520-0485(1993)023<1192:TAWDRW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kindle, J. C., and J. D. Thompson, 1989: The 26- and 50-day oscillations in the western Indian Ocean: Model results. J. Geophys. Res., 94, 47214736, https://doi.org/10.1029/JC094iC04p04721.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, G. S., and W. G. Yeager, 2009: The global climatology of an interannually varying air – Sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary-layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemarié, F., J. Kurian, A. F. Shchepetkin, M. Jeroen Molemaker, F. Colas, and J. C. McWilliams, 2012: Are there inescapable issues prohibiting the use of terrain-following coordinates in climate models? Ocean Modell., 42, 5779, https://doi.org/10.1016/j.ocemod.2011.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562, https://doi.org/10.1175/JPO3130.1.

  • Lyman, J. M., G. C. Johnson, and W. S. Kessler, 2007: Distinct 17- and 33-day tropical instability waves in subsurface observations. J. Phys. Oceanogr., 37, 855872, https://doi.org/10.1175/JPO3023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malardé, J.-P., P. De Mey, C. Périgaud, and J.-F. Minster, 1987: Observation of long equatorial waves in the Pacific Ocean by Seasat altimetry. J. Phys. Oceanogr., 17, 22732279, https://doi.org/10.1175/1520-0485(1987)017<2273:OOLEWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., J. C. McWilliams, and A. Shchepetkin, 2001: Open boundary conditions for long-term integration of regional oceanic models. Ocean Modell., 3, 120, https://doi.org/10.1016/S1463-5003(00)00013-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, 57335752, https://doi.org/10.1029/96JC02776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, E., J. Molemaker, A. F. Shchepetkin, F. Colas, J. C. McWilliams, and P. Sangrà, 2010: Procedures for offline grid nesting in regional ocean models. Ocean Modell., 35, 115, https://doi.org/10.1016/j.ocemod.2010.05.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and R. A. Knox, 1979: Equatorial Kelvin and inertio-gravity waves in zonal shear flow. J. Phys. Oceanogr., 9, 263277, https://doi.org/10.1175/1520-0485(1979)009<0263:EKAIGW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ménesguen, C., A. Delpech, F. Marin, S. Cravatte, and R. Schopp, 2019: Observations and mechanisms for the formation of deep equatorial and tropical circulation. Earth Space Sci., 6, 370386, https://doi.org/10.1029/2018EA000438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molemaker, J. M., J. C. McWilliams, and W. K. Dewar, 2015: Submesoscale instability and generation of mesoscale anticyclones near a separation of the California undercurrent. J. Phys. Oceanogr., 45, 613629, https://doi.org/10.1175/JPO-D-13-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penven, P., L. Debreu, P. Marchesiello, and J.C. McWilliams, 2006: Evaluation and application of the ROMS 1-way embedding procedure to the central California upwelling system. Ocean Modell., 12, 157187, https://doi.org/10.1016/j.ocemod.2005.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K., J. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396, https://doi.org/10.1126/science.276.5309.93.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiao, L., and R. H. Weisberg, 1995: Tropical instability wave kinematics: Observations from the tropical instability wave experiments. J. Geophys. Res., 100, 86778693, https://doi.org/10.1029/95JC00305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Risien, C. M., and D. B. Chelton, 2008: A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J. Phys. Oceanogr., 38, 23792413, https://doi.org/10.1175/2008JPO3881.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2009a: Computational Kernel algorithms for fine-scale, multiprocess, longtime oceanic simulations. Handb. Numer. Anal., 14, 121183, https://doi.org/10.1016/S1570-8659(08)01202-0.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2009b: Correction and commentary for “Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system.” J. Comput. Phys., 228, 89859000, https://doi.org/10.1016/j.jcp.2009.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2011: Accurate Boussinesq oceanic modeling with a practical, “stiffened” equation of state. Ocean Modell., 38, 4170, https://doi.org/10.1016/j.ocemod.2011.01.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinoda, T., 2012: Observation of first and second baroclinic mode Yanai waves in the ocean. Quart. J. Roy. Meteor. Soc., 138, 10181024, https://doi.org/10.1002/qj.968.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., and D. T. Sandwell, 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 19561962, https://doi.org/10.1126/SCIENCE.277.5334.1956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, A. A., and R. A. Bromley, 1995: Dynamically consistent, quasi-hydrostatic equations for global models with a complete representation of the Coriolis force. Quart. J. Roy. Meteor. Soc., 121, 399418, https://doi.org/10.1002/qj.49712152208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winters, K. B., P. Bouruet-Aubertot, and T. Gerkema, 2011: Critical reflection and abyssal trapping of near-inertial waves on a beta-plane. J. Fluid Mech., 684, 111136, https://doi.org/10.1017/jfm.2011.280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodberry, E., M. E. Luther, and J. O. Brien, 1989: The wind-driven seasonal circulation in the southern tropical Indian Ocean. J. Geophys. Res., 94, 17 98518 002, https://doi.org/10.1029/JC094iC12p17985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and A. E. Gill, 1976: Observations of equatorially trapped waves in Pacific Sea level variations. Deep. Res. Oceanogr. Abstr., 23, 371390, https://doi.org/10.1016/0011-7471(76)90835-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 113 113 32
Full Text Views 49 49 12
PDF Downloads 80 80 24

Enhanced Abyssal Mixing in the Equatorial Pacific Associated with Non-Traditional Effects

View More View Less
  • 1 a Earth System Science Department, Stanford University, Stanford, California
  • | 2 b IRD/LEGOS, Toulouse, France
  • | 3 c Univ. Brest, CNRS, IRD, Ifremer, Laboratoire d’Océanographie Physique et Spatiale, IUEM, Brest, France
  • | 4 d Institut Universitaire de France, Paris, France
  • | 5 e Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Recent theoretical work has shown that, when the so-called nontraditional effects are taken into account, the reflection of equatorially trapped waves (ETWs) off the seafloor generates strong vertical shear that results in bottom-intensified mixing at the inertial latitude of the ETW via a mechanism of critical reflection. It has been estimated that this process could play an important role in driving diapycnal upwelling in the abyssal meridional overturning circulation (AMOC). However, these results were derived under an idealized configuration with a monochromatic ETW propagating through a flat ocean at rest. To test the theory in a flow that is more representative of the ocean, we contrast a set of realistic numerical simulations of the eastern equatorial Pacific run using either the hydrostatic or quasi-hydrostatic approximation, the latter of which accounts for nontraditional effects. The simulations are nested into a Pacific-wide hydrostatic parent solution forced with climatological data and realistic bathymetry, resulting in an ETW field and a deep circulation consistent with observations. Using these simulations, we observe enhanced abyssal mixing in the quasi-hydrostatic run, even over smooth topography, that is absent in the hydrostatic run. The mixing is associated with inertial shear that has spatiotemporal properties consistent with the critical reflection mechanism. The enhanced mixing results in a weakening of the abyssal stratification and drives diapycnal upwelling in our simulation, in agreement with the predictions from the idealized simulations. The diapycnal upwelling is O(10) Sv (1 Sv ≡ 106 m3 s−1) and thus could play an important role in closing the AMOC.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bertrand Delorme, bdelorme@stanford.edu

Abstract

Recent theoretical work has shown that, when the so-called nontraditional effects are taken into account, the reflection of equatorially trapped waves (ETWs) off the seafloor generates strong vertical shear that results in bottom-intensified mixing at the inertial latitude of the ETW via a mechanism of critical reflection. It has been estimated that this process could play an important role in driving diapycnal upwelling in the abyssal meridional overturning circulation (AMOC). However, these results were derived under an idealized configuration with a monochromatic ETW propagating through a flat ocean at rest. To test the theory in a flow that is more representative of the ocean, we contrast a set of realistic numerical simulations of the eastern equatorial Pacific run using either the hydrostatic or quasi-hydrostatic approximation, the latter of which accounts for nontraditional effects. The simulations are nested into a Pacific-wide hydrostatic parent solution forced with climatological data and realistic bathymetry, resulting in an ETW field and a deep circulation consistent with observations. Using these simulations, we observe enhanced abyssal mixing in the quasi-hydrostatic run, even over smooth topography, that is absent in the hydrostatic run. The mixing is associated with inertial shear that has spatiotemporal properties consistent with the critical reflection mechanism. The enhanced mixing results in a weakening of the abyssal stratification and drives diapycnal upwelling in our simulation, in agreement with the predictions from the idealized simulations. The diapycnal upwelling is O(10) Sv (1 Sv ≡ 106 m3 s−1) and thus could play an important role in closing the AMOC.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bertrand Delorme, bdelorme@stanford.edu
Save