• Akan, Ç., J. C. McWilliams, and Y. Uchiyama, 2020: Topographic and coastline influences on surf eddies. Ocean Model., 147, 101565, https://doi.org/10.1016/j.ocemod.2019.101565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, J., P. Newberger, and J. Federiuk, 1995: Upwelling circulation on the Oregon continental shelf. Part I: Response to idealized forcing. J. Phys. Oceanogr., 25, 18431866, https://doi.org/10.1175/1520-0485(1995)025<1843:UCOTOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austin, J. A., and S. J. Lentz, 2002: The inner shelf response to wind-driven upwelling and downwelling. J. Phys. Oceanogr., 32, 21712193, https://doi.org/10.1175/1520-0485(2002)032<2171:TISRTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 2016: Cross-shelf exchange. Annu. Rev. Mar. Sci., 8, 5978, https://doi.org/10.1146/annurev-marine-010814-015717.

  • Brown, J. A., J. H. MacMahan, A. J. Reniers, and E. B. Thornton, 2015: Field observations of surf zone–inner shelf exchange on a rip-channeled beach. J. Phys. Oceanogr., 45, 23392355, https://doi.org/10.1175/JPO-D-14-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., and S. J. Lentz, 1994: Trapping of a coastal density front by the bottom boundary layer. J. Phys. Oceanogr., 24, 14641479, https://doi.org/10.1175/1520-0485(1994)024<1464:TOACDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C., R. J. Schlitz, R. G. Lough, K. W. Smith, R. Beardsley, and J. P. Manning, 2003: Wind-induced, cross-frontal exchange on Georges Bank: A mechanism for early summer on-bank biological particle transport. J. Geophys. Res., 108, 8011, https://doi.org/10.1029/2002JC001358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Church, J. C., and E. B. Thornton, 1993: Effects of breaking wave induced turbulence within a longshore current model. Coastal Eng., 20, 128, https://doi.org/10.1016/0378-3839(93)90053-B.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., and J.-M. Beckers, 2011: Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects. Academic Press, 875 pp.

    • Search Google Scholar
    • Export Citation
  • Feddersen, F., R. Guza, S. Elgar, and T. Herbers, 2000: Velocity moments in alongshore bottom stress parameterizations. J. Geophys. Res., 105, 86738686, https://doi.org/10.1029/2000JC900022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujimura, A. G., A. J. Reniers, C. B. Paris, A. L. Shanks, J. H. MacMahan, and S. G. Morgan, 2018: Mechanisms of cross-shore transport and spatial variability of phytoplankton on a rip-channeled beach. Front. Mar. Sci., 5, 183, https://doi.org/10.3389/fmars.2018.00183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gawarkiewicz, G., K. H. Brink, F. Bahr, R. C. Beardsley, M. Caruso, J. F. Lynch, and C.-S. Chiu, 2004: A large-amplitude meander of the shelfbreak front during summer south of New England: Observations from the shelfbreak primer experiment. J. Geophys. Res., 109, C03006, https://doi.org/10.1029/2002JC001468.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1982: The mathematical theory of frontogenesis. Annu. Rev. Fluid Mech., 14, 131151, https://doi.org/10.1146/annurev.fl.14.010182.001023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houghton, R., F. Aikman III, and H. Ou, 1988: Shelf-slope frontal structure and cross-shelf exchange at the New England shelf-break. Cont. Shelf Res., 8, 687710, https://doi.org/10.1016/0278-4343(88)90072-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kranenburg, W. M., J. S. Ribberink, R. E. Uittenbogaard, and S. J. Hulscher, 2012: Net currents in the wave bottom boundary layer: On waveshape streaming and progressive wave streaming. J. Geophys. Res., 117, F03005, https://doi.org/10.1029/2011JF002070.

    • Search Google Scholar
    • Export Citation
  • Kumar, N., and F. Feddersen, 2017: The effect of Stokes drift and transient rip currents on the inner shelf. Part II: With stratification. J. Phys. Oceanogr., 47, 243260, https://doi.org/10.1175/JPO-D-16-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., and M. R. Fewings, 2012: The wind-and wave-driven inner-shelf circulation. Annu. Rev. Mar. Sci., 4, 317343, https://doi.org/10.1146/annurev-marine-120709-142745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., M. Fewings, P. Howd, J. Fredericks, and K. Hathaway, 2008: Observations and a model of undertow over the inner continental shelf. J. Phys. Oceanogr., 38, 23412357, https://doi.org/10.1175/2008JPO3986.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1953: Mass transport in water waves. Philos. Trans. Roy. Soc. London, 245A, 535581, https://doi.org/10.1098/rsta.1953.0006.

    • Search Google Scholar
    • Export Citation
  • MacMahan, J. H., E. B. Thornton, and A. J. Reniers, 2006: Rip current review. Coastal Eng., 53, 191208, https://doi.org/10.1016/j.coastaleng.2005.10.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., R. Benshila, R. Almar, Y. Uchiyama, J. C. McWilliams, and A. Shchepetkin, 2015: On tridimensional rip current modeling. Ocean Modell., 96, 3648, https://doi.org/10.1016/j.ocemod.2015.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masselink, G., and A. D. Short, 1993: The effect of tide range on beach morphodynamics and morphology: A conceptual beach model. J. Coastal Res., 9, 785800.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2018: Surface wave effects on submesoscale fronts and filaments. J. Fluid Mech., 843, 479517, https://doi.org/10.1017/jfm.2018.158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2021: Oceanic frontogenesis. Annu. Rev. Mar. Sci., 13, 227253, https://doi.org/10.1146/annurev-marine-032320-120725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., J. M. Restrepo, and E. M. Lane, 2004: An asymptotic theory for the interaction of waves and currents in coastal waters. J. Fluid Mech., 511, 135178, https://doi.org/10.1017/S0022112004009358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nittrouer, C. A., and L. D. Wright, 1994: Transport of particles across continental shelves. Rev. Geophys., 32, 85113, https://doi.org/10.1029/93RG02603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pineda, J., 1994: Internal tidal bores in the nearshore: Warm-water fronts, seaward gravity currents and the onshore transport of neustonic larvae. J. Mar. Res., 52, 427458, https://doi.org/10.1357/0022240943077046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reniers, A., E. Thornton, T. Stanton, and J. Roelvink, 2004: Vertical flow structure during sandy duck: Observations and modeling. Coastal Eng., 51, 237260, https://doi.org/10.1016/j.coastaleng.2004.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reniers, A. J., J. MacMahan, E. Thornton, T. Stanton, M. Henriquez, J. Brown, J. Brown, and E. Gallagher, 2009: Surf zone surface retention on a rip-channeled beach. J. Geophys. Res., 114, C10010, https://doi.org/10.1029/2008JC005153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romero, L., D. Hypolite, and J. C. McWilliams, 2020: Submesoscale current effects on surface waves. Ocean Model., 153, 101662, https://doi.org/10.1016/j.ocemod.2020.101662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruessink, B., J. Miles, F. Feddersen, R. Guza, and S. Elgar, 2001: Modeling the alongshore current on barred beaches. J. Geophys. Res., 106, 22 45122 463, https://doi.org/10.1029/2000JC000766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shanks, A. L., 1983: Surface slicks associated with tidally forced internal waves may transport pelagic larvae of benthic invertebrates and fishes shoreward. Mar. Ecol. Prog. Ser., 13, 311315, https://doi.org/10.3354/meps013311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shanks, A. L., J. MacMahan, S. G. Morgan, A. J. M. Reniers, M. Jarvis, J. Brown, A. Fujimura, and C. Griesemer, 2015: Transport of larvae and detritus across the surf zone of a steep reflective pocket beach. Mar. Ecol. Prog. Ser., 528, 7186, https://doi.org/10.3354/meps11223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., and J. Hunter, 1974: Fronts in the Irish sea. Nature, 250, 404406, https://doi.org/10.1038/250404a0.

  • Soulsby, R., 1997: Dynamics of Marine Sands: A Manual for Practical Applications. Thomas Telford, 249 pp.

  • Sullivan, P. P., and J. C. McWilliams, 2019: Langmuir turbulence and filament frontogenesis in the oceanic surface boundary layer. J. Fluid Mech., 879, 512553, https://doi.org/10.1017/jfm.2019.655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suzuki, N., and B. Fox-Kemper, 2016: Understanding Stokes forces in the wave-averaged equations. J. Geophys. Res. Oceans, 121, 35793596, https://doi.org/10.1002/2015JC011566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suzuki, N., B. Fox-Kemper, P. E. Hamlington, and L. P. Van Roekel, 2016: Surface waves affect frontogenesis. J. Geophys. Res. Oceans, 121, 35973624, https://doi.org/10.1002/2015JC011563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trowbridge, J., and O. S. Madsen, 1984: Turbulent wave boundary layers: 2. Second-order theory and mass transport. J. Geophys. Res., 89, 79998007, https://doi.org/10.1029/JC089iC05p07999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uchiyama, Y., J. C. McWilliams, and A. F. Shchepetkin, 2010: Wave–current interaction in an oceanic circulation model with a vortex-force formalism: Application to the surf zone. Ocean Modell., 34, 1635, https://doi.org/10.1016/j.ocemod.2010.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uchiyama, Y., J. C. McWilliams, and C. Akan, 2017: Three-dimensional transient rip currents: Bathymetric excitation of low-frequency intrinsic variability. J. Geophys. Res. Oceans, 122, 58265849, https://doi.org/10.1002/2017JC013005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P., and T. M. Özgökmen, 2018: Langmuir circulation with explicit surface waves from moving-mesh modeling. Geophys. Res. Lett., 45, 216226, https://doi.org/10.1002/2017GL076009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P., J. McWilliams, Y. Uchiyama, M. Chekroun, and D. Yi, 2020: Effects of wave streaming and wave variations on nearshore wave-driven circulation. J. Phys. Oceanogr., 50, 30253041, https://doi.org/10.1175/JPO-D-19-0304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weber, J. E. H., G. Broström, and Ø. Saetra, 2006: Eulerian versus Lagrangian approaches to the wave-induced transport in the upper ocean. J. Phys. Oceanogr., 36, 21062118, https://doi.org/10.1175/JPO2951.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Z., and A. Bowen, 1994: Wave-and wind-driven flow in water of finite depth. J. Phys. Oceanogr., 24, 18501866, https://doi.org/10.1175/1520-0485(1994)024<1850:WAWDFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 141 141 20
Full Text Views 66 66 2
PDF Downloads 87 87 2

A Nearshore Oceanic Front Induced by Wave Streaming

View More View Less
  • 1 a Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
  • | 2 b Department of Civil Engineering, Kobe University, Kobe, Japan
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Coastal fronts impact cross-shelf exchange of materials, such as plankton and nutrients, that are important to the ecosystems in continental shelves. Here, using numerical simulation we demonstrate a nearshore front induced by wave streaming. Wave streaming is a bottom Eulerian current along the surface wave direction, and it is caused by the wave bottom dissipation. Wave streaming drives a Lagrangian overturning circulation in the inner shelf and pumps up deep and cold water into the overturning circulation. The water inside the overturning circulation is quickly mixed and cooled because of the wave-streaming-enhanced viscosity. However, the offshore water outside the overturning circulation remains stratified and warmer. Hence, a front develops between the water inside and outside the overturning circulation. The front is unstable and generates submesoscale shelf eddies, which cause the offshore transport across the front. This study presents a new mechanism for coastal frontogenesis.

Significance Statement

Cross-shelf exchange of materials, such as plankton and nutrients, is important to the health of ecosystems in the continental shelves. Such material exchange is affected by various coastal fronts that are characterized by a sharp change of water properties (e.g., density, temperature, or salinity) in a narrow distance. Here we find a novel nearshore front caused by the bottom drag on surface waves. The front is located in water that is ~10 m deep, roughly parallel to the shore, and it extends from the surface to the bottom. The front acts as a barrier that limits the material transport across the front. However, the front is unstable and generates eddies spreading offshore. These eddies break the frontal barrier, causing the offshore transport across the front. This study presents a new mechanism for coastal frontogenesis.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Peng Wang, wangpeng@ucla.edu

Abstract

Coastal fronts impact cross-shelf exchange of materials, such as plankton and nutrients, that are important to the ecosystems in continental shelves. Here, using numerical simulation we demonstrate a nearshore front induced by wave streaming. Wave streaming is a bottom Eulerian current along the surface wave direction, and it is caused by the wave bottom dissipation. Wave streaming drives a Lagrangian overturning circulation in the inner shelf and pumps up deep and cold water into the overturning circulation. The water inside the overturning circulation is quickly mixed and cooled because of the wave-streaming-enhanced viscosity. However, the offshore water outside the overturning circulation remains stratified and warmer. Hence, a front develops between the water inside and outside the overturning circulation. The front is unstable and generates submesoscale shelf eddies, which cause the offshore transport across the front. This study presents a new mechanism for coastal frontogenesis.

Significance Statement

Cross-shelf exchange of materials, such as plankton and nutrients, is important to the health of ecosystems in the continental shelves. Such material exchange is affected by various coastal fronts that are characterized by a sharp change of water properties (e.g., density, temperature, or salinity) in a narrow distance. Here we find a novel nearshore front caused by the bottom drag on surface waves. The front is located in water that is ~10 m deep, roughly parallel to the shore, and it extends from the surface to the bottom. The front acts as a barrier that limits the material transport across the front. However, the front is unstable and generates eddies spreading offshore. These eddies break the frontal barrier, causing the offshore transport across the front. This study presents a new mechanism for coastal frontogenesis.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Peng Wang, wangpeng@ucla.edu
Save