• Admiralty, 2018: Ocean Passages for the World (NP136). 1st ed. UK Hydrographic Office, 224–225.

  • An, S. I., 2008: Interannual variations of the tropical ocean instability wave and ENSO. J. Climate, 21, 36803686, https://doi.org/10.1175/2008JCLI1701.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ancapichun, S., J. Garcés-Vargas, 2015: Variability of the southeast pacific subtropical anticyclone and its impact on sea surface temperature off north-central Chile. Cienc. Mar., 41 (1), 120, https://doi.org/10.7773/CM.V41I1.2338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonjean, F., and G. S. E. Lagerloef, 2002: Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J. Phys. Oceanogr., 32, 29382954, https://doi.org/10.1175/1520-0485(2002)032<2938:DMAAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D. K., and et al. , 2015: Strong influence of westerly wind bursts on El Niño diversity. Nat. Geosci., 8, 339345, https://doi.org/10.1038/ngeo2399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., B. Qiu, Y. Du, S. Chen, and Y. Qi, 2016: Interannual and interdecadal variability of the North Equatorial Countercurrent in the western Pacific. J. Geophys. Res. Oceans, 121, 77437758, https://doi.org/10.1002/2016JC012190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eisenman, I., L. Yu, and E. Tziperman, 2005: Westerly wind bursts: ENSO’s tail rather than the dog. J. Climate, 18, 52245238, https://doi.org/10.1175/JCLI3588.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., S. Hu, M. Lengaigne, and E. Guilyardi, 2014: The impact of westerly wind bursts and ocean initial state on the development and diversity of El Niño events. Climate Dyn., 44, 13811401, https://doi.org/10.1007/s00382-014-2126-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flores-Aqueveque, V., M. Rojas, C. Aguirre, P. A. Arias, and C. González, 2020: South Pacific subtropical high from the late Holocene to the end of the 21st century: Insights from climate proxies and general circulation models. Climate Past, 16, 7999, https://doi.org/10.5194/cp-16-79-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebbie, G., I. Eisenman, A. Wittenberg, and E. Tziperman, 2007: Modulation of westerly wind bursts by sea surface temperature: As emistochastic feedback for ENSO. J. Atmos. Sci., 64, 32813295, https://doi.org/10.1175/JAS4029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and G. A. Vecchi, 1997: Westerly wind events in the tropical Pacific, 1986–95. J. Climate, 10, 31313156, https://doi.org/10.1175/1520-0442(1997)010<3131:WWEITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515533, https://doi.org/10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., and A. V. Fedorov, 2017: The extreme El Niño of 2015–2016: The role of westerly and easterly wind bursts, and preconditioning by the failed 2014 event. Climate Dyn., 52, 73397357, https://doi.org/10.1007/S00382-017-3531-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IRI, 2021: IRI ENSO forecast. International Research Institute for Climate and Society, Columbia University, http://iri.columbia.edu/our-expertise/climate/forecasts/enso/current.

  • Johnson, G. C., B. M. Sloyan, W. S. Kessler, and K. E. McTaggart, 2002: Direct measurements of upper ocean currents and water properties across the tropical Pacific during the 1990s. Prog. Oceanogr., 52, 3161, https://doi.org/10.1016/S0079-6611(02)00021-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, W., and W. Cai, 2014: The importance of the eastward zonal current for generating extreme El Niño. Climate Dyn., 42, 30053014, https://doi.org/10.1007/s00382-013-1792-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, W., W. Cai, and J. S. Kug, 2015: Migration of atmospheric convection coupled with ocean currents pushes El Niño to extremes. Geophys. Res. Lett., 42, 35833590, https://doi.org/10.1002/2015GL063886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. A. Knaff, 2000: How much skill was there in forecasting the very strong 1997-98 El Niño? Bull. Amer. Meteor. Soc., 81, 21072119, https://doi.org/10.1175/1520-0477(2000)081<2107:HMSWTI>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., and et al. , 2004: Triggering of El Niño by westerly wind events in a coupled general circulation model. Climate Dyn., 23, 601620, https://doi.org/10.1007/s00382-004-0457-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., J. P. Boulanger, C. Menkes, and H. Spencer, 2006: Influence of the seasonal cycle on the termination of El Niño events in a coupled general circulation model. J. Climate, 19, 18501868, https://doi.org/10.1175/JCLI3706.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, A., and M. J. McPhaden, 2016: How the July 2014 easterly wind burst gave the 2015–2016 El Niño a head start. Geophys. Res. Lett., 43, 65036510, https://doi.org/10.1002/2016GL069204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, A., F. F. Jin, and M. J. McPhaden, 2016: Extreme noise-extreme El Nino: How state-dependent noise forcing creates El Niño–La Niña asymmetry. J. Climate, 29, 54835499, https://doi.org/10.1175/JCLI-D-16-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277, https://doi.org/10.1175/1520-0477-77.6.1274.

    • Search Google Scholar
    • Export Citation
  • Linacre, E., and B. Geerts, 1998: The South Pacific high, ocean currents, and El Niño. Climates and Weather Explained, Routledge, 348–382, http://www-das.uwyo.edu/~geerts/cwx/notes/chap11/fujita.html.

  • McPhaden, M. J., 1999: Climate oscillations: Genesis and evolution of the 1997–98 El Niño. Science, 283, 950954, https://doi.org/10.1126/science.283.5404.950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and X. Yu, 1999: Equatorial waves and the 1997–1998 El Nino. Geophys. Res. Lett., 26, 29612964, https://doi.org/10.1029/1999GL004901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in 360 Earth. Science, 314, 17401745, https://doi.org/10.1126/science.1132588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menkes, C. E., and et al. , 2014: About the role of westerly wind events in the possible development of an El Niño in 2014. Geophys. Res. Lett., 41, 64766483, https://doi.org/10.1002/2014GL061186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philander, S. G., and A. Fedorov, 2003: Is El Niño sporadic or cyclic? Annu. Rev. Earth Planet. Sci., 31, 579594, https://doi.org/10.1146/annurev.earth.31.100901.141255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Picaut, J., F. Masia, and Y. D. Penhoat, 1997: An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science, 277, 663666, https://doi.org/10.1126/science.277.5326.663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Puy, M., J. Vialard, M. Lengaigne, and E. Guilyardi, 2016: Modulation of equatorial Pacific westerly/easterly wind events by the Madden-Julian oscillation and convectively-coupled Rossby waves. Climate Dyn., 46, 21552178, https://doi.org/10.1007/s00382-015-2695-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rollenbeck, R., and et al. , 2015: Climatic cycles and gradients of the El Niño core region in North Peru. Adv. Meteor., 2015, 750181, https://doi.org/10.1155/2015/750181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santoso, A., and et al. , 2013: Late-twentieth-century emergence of the El Nino propagation asymmetry and future projections. Nature, 504, 126130, https://doi.org/10.1038/nature12683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thual, S., A. J. Majda, N. Chen, and S. N. Stechmann, 2016: Simple stochastic model for El Niño with westerly wind bursts. Proc. Natl. Acad. Sci. USA, 113, 10 24510 250, https://doi.org/10.1073/pnas.1612002113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., A. G. Barnston, and S. Li, 2012: Performance of recent multimodel ENSO forecasts. J. Appl. Meteor. Climatol., 51, 637654, https://doi.org/10.1175/JAMC-D-11-093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1976: Spatial and temporal variations in the southern oscillation. Quart. J. Roy. Meteor. Soc., 102, 639653, https://doi.org/10.1002/qj.49710243310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J. V., 2000: What caused the onset of the 1997–98 El Niño? Mon. Wea. Rev., 128, 26012607, https://doi.org/10.1175/1520-0493(2000)128<2601:WCTOOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Varma, V., and et al. , 2012: Holocene evolution of the Southern Hemisphere westerly winds in transient simulations with global climate models. Climate Past, 8, 391402, https://doi.org/10.5194/cp-8-391-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., C. Deser, J. Y. Yu, P. DiNezio, and A. Clement, 2017: El Niño and Southern Oscillation (ENSO): A review. Coral Reefs of the Eastern Tropical Pacific, P. Glynn, D. Manzello, and I. Enochs, Eds., Coral Reefs of the World, Vol 8, Springer, 85–106.

  • Wang, F., Y. L. Li, and J. N. Wang, 2016: Intraseasonal variability of the surface zonal currents in the western tropical Pacific Ocean: Characteristics and mechanisms. J. Phys. Oceanogr., 46, 36393660, https://doi.org/10.1175/JPO-D-16-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., M. Chen, and A. Kumar, 2010: An assessment of the CFS real-time seasonal forecasts. Wea. Forecasting, 25, 950969, https://doi.org/10.1175/2010WAF2222345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1973: Teleconnections in the equatorial Pacific Ocean. Science, 180, 6668, https://doi.org/10.1126/science.180.4081.66.

  • Wyrtki, K., 1975: El Niño—The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5, 572584, https://doi.org/10.1175/1520-0485(1975)005<0572:ENTDRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 216 216 17
Full Text Views 45 45 5
PDF Downloads 54 54 7

Unveiling the Mysteries of SST Evolutions in the Equatorial Pacific at the Onset of El Niño Events

View More View Less
  • 1 a Department of Meteorology and Oceanography, Shanghai Maritime University, Shanghai, China
  • | 2 b Wuhan University of Technology, Wuhan, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

It is generally accepted that the El Niño–Southern Oscillation (ENSO) dominates interannual climate variability. Yet, its genesis and maintenance mechanisms are still under intense debate, with no scientific consensus. Some authors argued that the westerly winds originating over the equatorial Indian Ocean are significantly enhanced and extend eastward in the western and central equatorial Pacific during El Niño events, thus advecting the warm pool eastward along the equator and causing SST anomalies. However, this assertion is unlikely to be quantitatively supported by observational data. Here we present detailed observational data and modeling evidence to demonstrate that the westerly winds had little change in intensity in the western equatorial Pacific, with a wider zonal extent only during most El Niño events, and with a slight increase even in the most pronounced 1997 El Niño. Instead, an eastward equatorial current near the equator has been observed and is considered to play a significant role in shifting the eastern edge of the warm pool eastward, elevating SSTs in the central and eastern equatorial Pacific and giving rise to El Niño, with the interactions between the eastward warm pool and the upwelling in the eastern cold tongue ascertaining the amplitudes of SST anomalies.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiangying Xi, xxy98982018@163.com

Abstract

It is generally accepted that the El Niño–Southern Oscillation (ENSO) dominates interannual climate variability. Yet, its genesis and maintenance mechanisms are still under intense debate, with no scientific consensus. Some authors argued that the westerly winds originating over the equatorial Indian Ocean are significantly enhanced and extend eastward in the western and central equatorial Pacific during El Niño events, thus advecting the warm pool eastward along the equator and causing SST anomalies. However, this assertion is unlikely to be quantitatively supported by observational data. Here we present detailed observational data and modeling evidence to demonstrate that the westerly winds had little change in intensity in the western equatorial Pacific, with a wider zonal extent only during most El Niño events, and with a slight increase even in the most pronounced 1997 El Niño. Instead, an eastward equatorial current near the equator has been observed and is considered to play a significant role in shifting the eastern edge of the warm pool eastward, elevating SSTs in the central and eastern equatorial Pacific and giving rise to El Niño, with the interactions between the eastward warm pool and the upwelling in the eastern cold tongue ascertaining the amplitudes of SST anomalies.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiangying Xi, xxy98982018@163.com

Supplementary Materials

    • Supplemental Materials (PDF 1.33 MB)
Save