• Almansi, M., T. W. N. Haine, R. S. Pickart, M. G. Magaldi, R. Gelderloos, and D. Mastropole, 2017: High-frequency variability in the circulation and hydrography of the Denmark Strait overflow from a high-resolution numerical model. J. Phys. Oceanogr., 47, 29993013, https://doi.org/10.1175/JPO-D-17-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Almansi, M., T. W. N. Haine, R. Gelderloos, and R.S. Pickart, 2020: Evolution of Denmark Strait overflow cyclones and their relationship to overflow surges. Geophys. Res. Lett., 47, e2019GL086759, https://doi.org/10.1029/2019GL086759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosse, A., and et al. , 2016: Scales and dynamics of submesoscale coherent vortices formed by deep convection in the northwestern Mediterranean Sea. J. Geophys. Res. Oceans, 121, 77167742, https://doi.org/10.1002/2016JC012144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracco, A., and J. Pedlosky, 2003: Vortex generation by topography in locally unstable baroclinic flows. J. Phys. Oceanogr., 33, 207219, https://doi.org/10.1175/1520-0485(2003)033<0207:VGBTIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracco, A., J. Pedlosky, and R. S. Pickart, 2008: Eddy formation near the west coast of Greenland. J. Phys. Oceanogr., 38, 19922002, https://doi.org/10.1175/2008JPO3669.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandt, P., F. Schott, A. Funk, and C. Sena Martins, 2004: Seasonal to interannual variability of the eddy field in the Labrador Sea from satellite altimetry. J. Geophys. Res., 109, C02028, https://doi.org/10.1029/2002JC001551.

    • Search Google Scholar
    • Export Citation
  • Bruce, J. G., 1995: Eddies southwest of the Denmark Strait. Deep-Sea Res., 42, 1329, https://doi.org/10.1016/0967-0637(94)00040-Y.

  • Cessi, P., and C. L. Wolfe, 2013: Adiabatic eastern boundary currents. J. Phys. Oceanogr., 43, 11271149, https://doi.org/10.1175/JPO-D-12-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chanut, J., B. Barnier, W. Large, L. Debreu, T. Penduff, J. M. Molines, and P. Mathiot, 2008: Mesoscale eddies in the Labrador Sea and their contribution to convection and restratification. J. Phys. Oceanogr., 38, 16171643, https://doi.org/10.1175/2008JPO3485.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, R. A., and J. C. Gascard, 1983: The formation of Labrador Sea Water. Part I: Large-scale processes. J. Phys. Oceanogr., 13, 17641778, https://doi.org/10.1175/1520-0485(1983)013<1764:TFOLSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Jong, M. F., A. S. Bower, and H. H. Furey, 2014: Two years of observations of warm-core anticyclones in the Labrador Sea and their seasonal cycle in heat and salt stratification. J. Phys. Oceanogr., 44, 427444, https://doi.org/10.1175/JPO-D-13-070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Jong, M. F., A. S. Bower, and H. H. Furey, 2016: Seasonal and interannual variations of Irminger ring formation and boundary–interior heat exchange in FLAME. J. Phys. Oceanogr., 46, 17171734, https://doi.org/10.1175/JPO-D-15-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickson, R. R., and J. Brown, 1994: The production of North Atlantic Deep Water: Sources, rates and pathways. J. Geophys. Res., 99, 12 31912 341, https://doi.org/10.1029/94JC00530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eden, C., and C. Böning, 2002: Sources of eddy kinetic energy in the Labrador Sea. J. Phys. Oceanogr., 32, 33463363, https://doi.org/10.1175/1520-0485(2002)032<3346:SOEKEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flierl, G., 1981: Particle motions in large-amplitude wave fields. Geophys. Astrophys. Fluid Dyn., 18, 3974, https://doi.org/10.1080/03091928108208773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frajka-Williams, E., P. B. Rhines, and C. C. Eriksen, 2009: Physical coontrols and mesoscale variability in the Labrador Sea spring phytoplankton bloom observed by Seaglider. Deep-Sea Res. I, 56, 21442161, https://doi.org/10.1016/j.dsr.2009.07.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gascard, J. C., and R. A. Clarke, 1983: The formation of Labrador Sea Water. Part II. Mesoscale and smaller-scale processes. J. Phys. Oceanogr., 13, 17791797, https://doi.org/10.1175/1520-0485(1983)013<1779:TFOLSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelderloos, R., C. A. Katsman, and A. S. S. Drijfhout, 2011: Assessing the roles of three eddy types in restratifying the Labrador Sea after deep convection. J. Phys. Oceanogr., 41, 21022119, https://doi.org/10.1175/JPO-D-11-054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hátún, H., C. Eriksen, P. Rhines, and J. Lilly, 2007: Buoyant eddies entering the Labrador Sea observed with gliders and altimetry. J. Phys. Oceanogr., 37, 28382854, https://doi.org/10.1175/2007JPO3567.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heywood, K. J., E. L. McDonagh, and M. A. White, 1994: Eddy kinetic energy of the North Atlantic subpolar gyre from satellite altimetry. J. Geophys. Res., 99, 22 52522 539, https://doi.org/10.1029/94JC01740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, N. G., 1986: On the correction of temperature and velocity time series for mooring motion. J. Atmos. Oceanic Technol., 3, 204214, https://doi.org/10.1175/1520-0426(1986)003<0204:OTCOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, N. G., 1991: Mooring motion corrections revisited. J. Atmos. Oceanic Technol., 8, 289295, https://doi.org/10.1175/1520-0426(1991)008<0289:MMCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holliday, N. P., A. Meyer, S. Bacon, S. Alderson, and B. de Cuevas, 2007: The retroflection of part of the East Greenland Current at Cape Farewell. Geophys. Res. Lett., 34, L07609, https://doi.org/10.1029/2006GL029085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holliday, N. P., S. Bacon, J. T. Allen, and E. L. McDonagh, 2009: Circulation and transport in the western boundary currents at Cape Farewell, Greenland. J. Phys. Oceanogr., 39, 18541870, https://doi.org/10.1175/2009JPO4160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopkins, J. E., N. P. Holliday, D. Rayner, L. Houpert, I. Le Bras, F. Straneo, C. Wilson, and S. Bacon, 2019: Transport variability of the Irminger Sea deep western boundary current from a mooring array. J. Geophys. Res. Oceans, 124, 32463278, https://doi.org/10.1029/2018JC014730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katsman, C., M. Spall, and R. S. Pickart, 2004: Boundary current eddies and their role in the restratification of the Labrador Sea. J. Phys. Oceanogr., 34, 19671983, https://doi.org/10.1175/1520-0485(2004)034<1967:BCEATR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawasaki, T., and H. Hasumi, 2014: Effect of freshwater from the West Greenland Current on the winter deep convection in the Labrador Sea. Ocean Modell., 75, 5164, https://doi.org/10.1016/j.ocemod.2014.01.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khatiwala, S., and et al. , 2013: Global ocean storage of anthropogenic carbon. Biogeosciences, 10, 21692191, https://doi.org/10.5194/bg-10-2169-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazier, J. R. N., and D. G. Wright, 1993: Annual velocity variations in the Labrador Current. J. Phys. Oceanogr., 23, 659678, https://doi.org/10.1175/1520-0485(1993)023<0659:AVVITL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Bras, I. A. A., F. Straneo, J. Holte, and N. P. Holliday, 2018: Seasonality of freshwater in the east Greenland current system from 2014 to 2016. J. Geophys. Res. Oceans, 123, 88288848, https://doi.org/10.1029/2018JC014511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Bras, I. A. A., F. Straneo, J. Holte, M. F. de Jong, and N. P. Holliday, 2020: Rapid export of waters formed by convection near the Irminger Sea’s western boundary. Geophys. Res. Lett., 47, e2019GL085989, https://doi.org/10.1029/2019GL085989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, A., and D. Ellett, 1965: On the contribution of overflow water from the Norwegian Sea to the hydrographic structure of the North Atlantic Ocean. Deep-Sea Res., 12, 129142, https://doi.org/10.1016/0011-7471(65)90019-7.

    • Search Google Scholar
    • Export Citation
  • Lilly, J. M., and P. B. Rhines, 2002: Coherent eddies in the Labrador Sea observed from a mooring. J. Phys. Oceanogr., 32, 585598, https://doi.org/10.1175/1520-0485(2002)032<0585:CEITLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, J. M., P. B. Rhines, F. Schott, K. Lavender, J. Lazier, U. Send, and E. D’Asaro, 2003: Observations of the Labrador Sea eddy field. Prog. Oceanogr., 59, 75176, https://doi.org/10.1016/j.pocean.2003.08.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, J. M., P. B. Rhines, M. Visbeck, R. Davis, J. R. N. Lazier, F. Schott, and D. Farmer, 1999: Observing deep convection in the Labrador Sea during winter 1994/1995. J. Phys. Oceanogr., 29, 20652098, https://doi.org/10.1175/1520-0485(1999)029<2065:ODCITL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, P., R. S. Pickart, D. J. Torres, and A. Pacini, 2018: Evolution of the freshwater coastal current at the southern tip of Greenland. J. Phys. Oceanogr., 48, 21272140, https://doi.org/10.1175/JPO-D-18-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, A., and K. Richards, 2001: Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy. Deep-Sea Res. II, 48, 757773, https://doi.org/10.1016/S0967-0645(00)00096-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mastropole, D., R. S. Pickart, H. Valdimarsson, K. Våge, K. Jochumsen, and J. B. Girton, 2017: On the hydrography of Denmark Strait. J. Geophys. Res. Oceans, 122, 306321, https://doi.org/10.1002/2016JC012007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 1985: Submesoscale, coherent vortices in the ocean. Rev. Geophys., 23, 165182, https://doi.org/10.1029/RG023i002p00165.

  • Nof, D., 1983: The translation of isolated cold eddies on a sloping bottom. Deep-Sea Res., 30, 171182, https://doi.org/10.1016/0198-0149(83)90067-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pacini, A., and et al. , 2020: Mean conditions and seasonality of the west Greenland boundary current system near Cape Farewell. J. Phys. Oceanogr., 50, 28492871, https://doi.org/10.1175/JPO-D-20-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawlowicz, R., B. Beardsley, and S. Lentz, 2002: Classical tidal harmonic analysis including error estimates in MATLAB using T-TIDE. Comput. Geosci., 28, 929937, https://doi.org/10.1016/S0098-3004(02)00013-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 2003: Waves in the Ocean and Atmosphere: Introduction to Wave Dynamics. Springer, 264 pp.

    • Crossref
    • Export Citation
  • Pickart, R. S., 1992: Water mass components of the North Atlantic deep western boundary current. Deep-Sea Res. I, 39, 15531572, https://doi.org/10.1016/0198-0149(92)90047-W.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., and M. A. Spall, 2007: Impact of Labrador Sea convection on the North Atlantic meridional overturning circulation. J. Phys. Oceanogr., 37, 22072227, https://doi.org/10.1175/JPO3178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., D. J. Torres, and R. A. Clarke, 2002: Hydrography of the Labrador Sea during active convection. J. Phys. Oceanogr., 32, 428457, https://doi.org/10.1175/1520-0485(2002)032<0428:HOTLSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., D. J. Torres, and P. S. Fratantoni, 2005: The East Greenland spill jet. J. Phys. Oceanogr., 35, 10371053, https://doi.org/10.1175/JPO2734.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prater, M., 2002: Eddies in the Labrador Sea as observed by profiling RAFOS floats and remote sensing. J. Phys. Oceanogr., 32, 411427, https://doi.org/10.1175/1520-0485(2002)032<0411:EITLSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhein, M., and et al. , 2002: Labrador Sea Water: Pathways, CFC inventory, and formation rates. J. Phys. Oceanogr., 32, 648665, https://doi.org/10.1175/1520-0485(2002)032<0648:LSWPCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rieck, J. K., C. W. Böning, and K. Getzlaff, 2019: The nature of eddy kinetic energy in the Labrador Sea: Different types of mesoscale eddies, their temporal variability and impact on deep convection. J. Phys. Oceanogr., 49, 20752094, https://doi.org/10.1175/JPO-D-18-0243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudels, B., E. Fahrbach, J. Meincke, G. Budéus, and P. Ericksson, 2002: The East Greenland Current and its contribution to the Denmark Strait overflow. ICES J. Mar. Sci., 59, 11331154, https://doi.org/10.1006/jmsc.2002.1284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rykova, T., F. Straneo, and A. S. Bower, 2015: Seasonal and interannual variability of the west Greenland current system in the Labrador Sea in 1993–2008. J. Geophys. Res. Oceans, 120, 13181332, https://doi.org/10.1002/2014JC010386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., and P. Wessel, 1990: Gridding with continuous curvature splines in tension. Geophysics, 55, 293305, https://doi.org/10.1190/1.1442837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2004: Boundary currents and water mass transformation in marginal seas. J. Phys. Oceanogr., 34, 11971213, https://doi.org/10.1175/1520-0485(2004)034<1197:BCAWTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2010: Dynamics of downwelling in an eddy-resolving convective basin. J. Phys. Oceanogr., 40, 23412347, https://doi.org/10.1175/2010JPO4465.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., and J. F. Price, 1998: Mesoscale variability in Denmark Strait: The PV outflow hypothesis. J. Phys. Oceanogr., 28, 15981623, https://doi.org/10.1175/1520-0485(1998)028<1598:MVIDST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., and R. S. Pickart, 2001: Where does dense water sink? A subpolar gyre example. J. Phys. Oceanogr., 31, 810826, https://doi.org/10.1175/1520-0485(2001)031<0810:WDDWSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., and J. Pedlosky, 2008: Lateral coupling in baroclinically unstable flows. J. Phys. Oceanogr., 38, 12671277, https://doi.org/10.1175/2007JPO3906.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., R. S. Pickart, P. Lin, H. Valdimarsson, T. W. N. Haine, and M. Almansi, 2019: Frontogenesis and variability in Denmark Strait and its influence on overflow water. J. Phys. Oceanogr., 49, 18891904, https://doi.org/10.1175/JPO-D-19-0053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutherland, D. A., R. S. Pickart, E. P. Jones, K. Azetsu-Scott, A. J. Eert, and J. Ólafsson, 2009: Freshwater composition of the waters off southEast Greenland and their link to the Arctic Ocean. J. Geophys. Res., 114, C05020, https://doi.org/10.1029/2008JC004808.

    • Search Google Scholar
    • Export Citation
  • Sy, A., M. Rhein, J. R. N. Lazier, K. P. Koltermann, J. Meincke, A. Putzka, and M. Bersch, 1997: Surprisingly rapid spreading of newly formed intermediate waters across the North Atlantic Ocean. Nature, 386, 675679, https://doi.org/10.1038/386675a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and et al. , 2009: Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep-Sea Res. II, 56, 554577, https://doi.org/10.1016/j.dsr2.2008.12.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., and M. S. McCartney, 1982: Distribution and circulation of Labrador Sea Water. J. Phys. Oceanogr., 12, 11891205, https://doi.org/10.1175/1520-0485(1982)012<1189:DACOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanhua, T., K. A. Olsson, and E. Jeansson, 2005: Formation of Denmark Strait Overflow Water and its hydro-chemical composition. J. Mar. Syst., 57, 264288, https://doi.org/10.1016/j.jmarsys.2005.05.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • The Lab Sea Group, 1998: The Labrador Sea Deep Convection Experiment. Bull. Amer. Meteor. Soc., 79, 20332058, https://doi.org/10.1175/1520-0477(1998)079<2033:TLSDCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • von Appen, W., R. S. Pickart, K. Brink, and T. Haine, 2014: Water column structure and statistics of Denmark Strait Overflow Water cyclones. Deep-Sea Res. I, 84, 110126, https://doi.org/10.1016/j.dsr.2013.10.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Appen, W., D. Mastropole, R. S. Pickart, H. Valdimarsson, S. Jónsson, and J. B. Girton, 2017: On the nature of the mesoscale variability in Denmark Strait. J. Phys. Oceanogr., 47, 567582, https://doi.org/10.1175/JPO-D-16-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolfe, C., and C. Cenedese, 2006: Laboratory experiments on eddy generation by a buoyant coastal current flowing over variable bathymetry. J. Phys. Oceanogr., 36, 395411, https://doi.org/10.1175/JPO2857.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 245 245 94
Full Text Views 108 108 50
PDF Downloads 141 141 64

Cyclonic Eddies in the West Greenland Boundary Current System

View More View Less
  • 1 a MIT–WHOI Joint Program in Physical Oceanography, Woods Hole, Massachusetts
  • | 2 b Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 3 c Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • | 4 d National Oceanography Centre, Southampton, United Kingdom
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The boundary current system in the Labrador Sea plays an integral role in modulating convection in the interior basin. Four years of mooring data from the eastern Labrador Sea reveal persistent mesoscale variability in the West Greenland boundary current. Between 2014 and 2018, 197 middepth intensified cyclones were identified that passed the array near the 2000-m isobath. In this study, we quantify these features and show that they are the downstream manifestation of Denmark Strait Overflow Water (DSOW) cyclones. A composite cyclone is constructed revealing an average radius of 9 km, maximum azimuthal speed of 24 cm s−1, and a core propagation velocity of 27 cm s−1. The core propagation velocity is significantly smaller than upstream near Denmark Strait, allowing them to trap more water. The cyclones transport a 200-m-thick lens of dense water at the bottom of the water column and increase the transport of DSOW in the West Greenland boundary current by 17% relative to the background flow. Only a portion of the features generated at Denmark Strait make it to the Labrador Sea, implying that the remainder are shed into the interior Irminger Sea, are retroflected at Cape Farewell, or dissipate. A synoptic shipboard survey east of Cape Farewell, conducted in summer 2020, captured two of these features that shed further light on their structure and timing. This is the first time DSOW cyclones have been observed in the Labrador Sea—a discovery that could have important implications for interior stratification.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: A. Pacini, apacini@whoi.edu

Abstract

The boundary current system in the Labrador Sea plays an integral role in modulating convection in the interior basin. Four years of mooring data from the eastern Labrador Sea reveal persistent mesoscale variability in the West Greenland boundary current. Between 2014 and 2018, 197 middepth intensified cyclones were identified that passed the array near the 2000-m isobath. In this study, we quantify these features and show that they are the downstream manifestation of Denmark Strait Overflow Water (DSOW) cyclones. A composite cyclone is constructed revealing an average radius of 9 km, maximum azimuthal speed of 24 cm s−1, and a core propagation velocity of 27 cm s−1. The core propagation velocity is significantly smaller than upstream near Denmark Strait, allowing them to trap more water. The cyclones transport a 200-m-thick lens of dense water at the bottom of the water column and increase the transport of DSOW in the West Greenland boundary current by 17% relative to the background flow. Only a portion of the features generated at Denmark Strait make it to the Labrador Sea, implying that the remainder are shed into the interior Irminger Sea, are retroflected at Cape Farewell, or dissipate. A synoptic shipboard survey east of Cape Farewell, conducted in summer 2020, captured two of these features that shed further light on their structure and timing. This is the first time DSOW cyclones have been observed in the Labrador Sea—a discovery that could have important implications for interior stratification.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: A. Pacini, apacini@whoi.edu
Save