• Aiki, H., and K. J. Richards, 2008: Energetics of the global ocean: The role of layer-thickness form drag. J. Phys. Oceanogr., 38, 18451869, https://doi.org/10.1175/2008JPO3820.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., M. Müller, J. G. Richman, J. F. Shriver, A. J. Morten, R. B. Scott, G. Sérazin, and T. Penduff, 2014: Geostrophic turbulence in the frequency–wavenumber domain: Eddy-driven low-frequency variability. J. Phys. Oceanogr., 44, 20502069, https://doi.org/10.1175/JPO-D-13-054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bachman, S. D., and B. Fox-Kemper, 2013: Eddy parameterization challenge suite. I: Eady spindown. Ocean Modell., 64, 1228, https://doi.org/10.1016/j.ocemod.2012.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bachman, S. D., and J. R. Taylor, 2014: Modelling of partially-resolved oceanic symmetric instability. Ocean Modell., 82, 1527, https://doi.org/10.1016/j.ocemod.2014.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bachman, S. D., B. Fox-Kemper, J. Taylor, and L. Thomas, 2017a: Parameterization of frontal symmetric instabilities. I: Theory for resolved fronts. Ocean Modell., 109, 7295, https://doi.org/10.1016/j.ocemod.2016.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bachman, S. D., J. Taylor, K. Adams, and P. Hosegood, 2017b: Mesoscale and submesoscale effects on mixed layer depth in the Southern Ocean. J. Phys. Oceanogr., 47, 21732188, https://doi.org/10.1175/JPO-D-17-0034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, https://doi.org/10.1175/JPO3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brannigan, L., D. Marshall, A. N. Garabato, A. J. G. Nurser, and J. Kaiser, 2017: Submesoscale instabilities in mesoscale eddies. J. Phys. Oceanogr., 47, 30613085, https://doi.org/10.1175/JPO-D-16-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckingham, C., and et al. , 2016: Seasonality of submesoscale flows in the ocean surface boundary layer. Geophys. Res. Lett., 43, 21182126, https://doi.org/10.1002/2016GL068009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckingham, C., Z. Khaleel, A. Lazar, A. Martin, J. Allen, A. N. Garabato, A. Thompson, and C. Vic, 2017: Testing Munk’s hypothesis for submesoscale eddy generation using observations in the North Atlantic. J. Geophys. Res. Oceans, 122, 67256745, https://doi.org/10.1002/2017JC012910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Ferrari, J. M. Klymak, and J. Gula, 2015: Seasonality in submesoscale turbulence. Nat. Commun., 6, 6862, https://doi.org/10.1038/ncomms7862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., G. Flierl, R. Ferrari, and B. Fox-Kemper, 2016: The role of mixed-layer instabilities in submesoscale turbulence. J. Fluid Mech., 788, 541, https://doi.org/10.1017/jfm.2015.700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, H., Z. Jing, B. Fox-kemper, T. Yan, and Y. Qi, 2019: Scale transition from geostrophic motions to internal waves in the northern South China Sea. J. Geophys. Res. Oceans, 124, 93649383, https://doi.org/10.1029/2019JC015575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. McWilliams, M. Molemaker, and A. Shchepetkin, 2008a: Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943, https://doi.org/10.1175/2007JPO3671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. McWilliams, M. Molemaker, and A. Shchepetkin, 2008b: Mesoscale to submesoscale transition in the California Current System. Part III: Energy balance and flux. J. Phys. Oceanogr., 38, 22562269, https://doi.org/10.1175/2008JPO3810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., G. Roullet, P. Klein, and G. Maze, 2016: Intensification of upper-ocean submesoscale turbulence through Charney baroclinic instability. J. Phys. Oceanogr., 46, 33653384, https://doi.org/10.1175/JPO-D-16-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capuano, T. A., S. Speich X. Carton, and B. Blanke, 2018: Mesoscale and submesoscale processes in the southeast Atlantic and their impact on the regional thermohaline structure. J. Geophys. Res. Oceans, 123, 19371961, https://doi.org/10.1002/2017JC013396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J., and B. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, https://doi.org/10.1175/2007MWR1978.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, R., G. R. Flierl, and C. Wunsch, 2014: A description of local and nonlocal eddy-mean flow interaction in a global eddy-permitting state estimate. J. Phys. Oceanogr., 44, 23362352, https://doi.org/10.1175/JPO-D-14-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronin, M., and D. Watts, 1996: Eddy-mean flow interaction in the Gulf Stream at 68°W. Part I: Eddy energetics. J. Phys. Oceanogr., 26, 21072131, https://doi.org/10.1175/1520-0485(1996)026<2107:EFIITG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., C. Lee, L. Rainville, R. Harcourt, and L. Thomas, 2011: Enhanced turbulence and energy dissipation at ocean fronts. Science, 332, 318322, https://doi.org/10.1126/science.1201515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and et al. , 2018: Ocean convergence and the dispersion of flotsam. Proc. Natl. Acad. Sci. USA, 115, 11621167, https://doi.org/10.1073/pnas.1718453115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and et al. , 2020: Advances in observing and understanding small-scale open ocean circulation during the Gulf of Mexico research initiative era. Front. Mar. Sci., 7, 349, https://doi.org/10.3389/fmars.2020.00349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2004JC002378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, J., B. Fox-Kemper, H. Zhang, and C. Dong, 2020a: The size of submesoscale baroclinic instability globally. J. Phys. Oceanogr., 50, 26492667, https://doi.org/10.1175/JPO-D-20-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, J., B. Fox-Kemper, H. Zhang, and C. Dong, 2020b: The seasonality of submesoscale energy production, content, and cascade. Geophys. Res. Lett., 47, e2020GL087388, https://doi.org/10.1029/2020GL087388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • du Plessis, M., S. Swart, I. J. Ansorge, A. Mahadevan, and A. F. Thompson, 2019: Southern ocean seasonal restratification delayed by submesoscale wind-front interactions. J. Phys. Oceanogr., 49, 10351053, https://doi.org/10.1175/JPO-D-18-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253282, https://doi.org/10.1146/annurev.fluid.40.111406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, https://doi.org/10.1175/2007JPO3792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentemann, C. L., and et al. , 2020: Saildrone: Adaptively sampling the marine environment. Bull. Amer. Meteor. Soc., 101, E744E762, https://doi.org/10.1175/BAMS-D-19-0015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.

  • Grooms, I., L. Nadeau, and K. Smith, 2013: Mesoscale eddy energy locality in an idealized ocean model. J. Phys. Oceanogr., 43, 19111923, https://doi.org/10.1175/JPO-D-13-036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. Molemaker, and J. McWilliams, 2014: Submesoscale cold filaments in the Gulf Stream. J. Phys. Oceanogr., 44, 26172643, https://doi.org/10.1175/JPO-D-14-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlington, P. E., L. P. Van Roekel, B. Fox-Kemper, K. Julien, and G. P. Chini, 2014: Langmuir-submesoscale interactions: Descriptive analysis of multiscale frontal spindown simulations. J. Phys. Oceanogr., 44, 22492272, https://doi.org/10.1175/JPO-D-13-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haney, S., B. Fox-Kemper, K. Julien, and A. Webb, 2015: Symmetric and geostrophic instabilities in the wave-forced ocean mixed layer. J. Phys. Oceanogr., 45, 30333056, https://doi.org/10.1175/JPO-D-15-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holopainen, E. O., 1978: A diagnostic study on the kinetic energy balance of the long-term mean flow and the associated transient fluctuation in the atmosphere. Geophysica, 15, 125145.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1974: The role of potential vorticity in symmetric stability and instability. Quart. J. Roy. Meteor. Soc., 100, 480482, https://doi.org/10.1002/qj.49710042520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 1999: Mixing and energetics of the oceanic thermohaline circulation. J. Phys. Oceanogr., 29, 727746, https://doi.org/10.1175/1520-0485(1999)029<0727:MAEOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jamet, Q., A. Ajayi, J. L. Sommer, T. Penduff, A. Hogg, and W. K. Dewar, 2020: On energy cascades in general flows: A Lagrangian application. J. Adv. Model. Earth Syst., 12, e2020MS002090, https://doi.org/10.1029/2020MS002090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiao, Y., and W. K. Dewar, 2015: The energetics of centrifugal instability. J. Phys. Oceanogr., 45, 15541573, https://doi.org/10.1175/JPO-D-14-0064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, Z., Y. Qi, B. Fox-Kemper, Y. Du, and S. Lian, 2016: Seasonal thermal fronts and their associations with monsoon forcing on the continental shelf of northern South China Sea: Satellite measurements and three repeated field surveys in winter, spring and summer. J. Geophys. Res. Oceans, 121, 19141930, https://doi.org/10.1002/2015JC011222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, Z., B. Fox-Kemper, H. Cao, R. Zheng, and Y. Du, 2021: Submesoscale fronts and their dynamical processes associated with symmetric instability in the northwest Pacific subtropical Ocean. J. Phys. Oceanogr., 51, 83100, https://doi.org/10.1175/JPO-D-20-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, D., and O. B. Fringer, 2010: On the calculation of available potential energy in internal wave fields. J. Phys. Oceanogr., 40, 25392545, https://doi.org/10.1175/2010JPO4497.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, D., and E. N. Curchitser, 2015: Energetics of eddy-mean flow interactions in the Gulf Stream region. J. Phys. Oceanogr., 45, 11031120, https://doi.org/10.1175/JPO-D-14-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., B. L. Hua, G. Lapeyre X. Capet, S. Le Gentil, and H. Sasaki, 2008: Upper ocean turbulence from high-resolution 3D simulations. J. Phys. Oceanogr., 38, 17481763, https://doi.org/10.1175/2007JPO3773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klocker, A., D. Marshall, S. Keating, and P. Read, 2016: A regime diagram for ocean geostrophic turbulence. Quart. J. Roy. Meteor. Soc., 142, 24112417, https://doi.org/10.1002/qj.2833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraichnan, R. H., 1967: Inertial ranges in two-dimensional turbulence. Phys. Fluids, 10, 14171423, https://doi.org/10.1063/1.1762301.

  • Large, W., J. McWilliams, and S. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemarié, F., J. Kurian, A. F. Shchepetkin, M. J. Molemaker, F. Colas, and J. C. McWilliams, 2012: Are there inescapable issues prohibiting the use of terrain-following coordinates in climate models? Ocean Modell., 42, 5779, https://doi.org/10.1016/j.ocemod.2011.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lévy, M., P. Klein, and A. Tréguier, 2001: Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime. J. Mar. Res., 59, 535565, https://doi.org/10.1357/002224001762842181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lévy, M., D. Iovino, L. Resplandy, P. Klein, G. Madec, A. Tréguier, S. Masson, and K. Takahashi, 2012: Large-scale impacts of submesoscale dynamics on phytoplankton: Local and remote effects. Ocean Modell., 43-44, 7793, https://doi.org/10.1016/j.ocemod.2011.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167, https://doi.org/10.3402/tellusa.v7i2.8796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., and A. Tandon, 2006: An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Modell., 14, 241256, https://doi.org/10.1016/j.ocemod.2006.05.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc., 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.

  • Molemaker, M., J. McWilliams, and X. Capet, 2010: Balanced and unbalanced routes to dissipation in an equilibrated Eady flow. J. Fluid Mech., 654, 3563, https://doi.org/10.1017/S0022112009993272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W., L. Armi, K. Fischer, and F. Zachariasen, 2000: Spirals on the sea. Proc. Roy. Soc., 456A, 12171280, https://doi.org/10.1098/rspa.2000.0560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., and A. Kazmin, 2003: Decadal changes in the North Pacific oceanic frontal zones as revealed in ship and satellite observations. J. Geophys. Res., 108, 3078, https://doi.org/10.1029/1999JC000085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearson, B., and B. Fox-Kemper, 2018: Log-normal turbulence dissipation in global ocean models. Phys. Rev. Lett., 120, 094501, https://doi.org/10.1103/PhysRevLett.120.094501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearson, B., B. Fox-Kemper, S. D. Bachman, and F. O. Bryan, 2017: Evaluation of scale-aware subgrid mesoscale eddy models in a global eddy-rich model. Ocean Modell., 115, 4258, https://doi.org/10.1016/j.ocemod.2017.05.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearson, J., B. Fox-Kemper, R. Barkan, J. Choi, A. Bracco, and J. C. McWilliams, 2019: Impacts of convergence on structure functions from surface drifters in the Gulf of Mexico. J. Phys. Oceanogr., 49, 675690, https://doi.org/10.1175/JPO-D-18-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearson, J., and et al. , 2020: Biases in structure functions from observations of submesoscale flows. J. Geophys. Res. Oceans, 125, e2019JC015769, https://doi.org/10.1029/2019JC015769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1983: A new look at the energy cycle. J. Atmos. Sci., 40, 16691688, https://doi.org/10.1175/1520-0469(1983)040<1669:ANLATE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2000: Interannual variability of the Kuroshio Extension system and its impact on the wintertime SST field. J. Phys. Oceanogr., 30, 14861502, https://doi.org/10.1175/1520-0485(2000)030<1486:IVOTKE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2005: Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. J. Phys. Oceanogr., 35, 20902103, https://doi.org/10.1175/JPO2807.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., K. Kelly, and T. Joyce, 1991: Mean flow and variability in the Kuroshio Extension from Geosat altimetry data. J. Geophys. Res., 96, 18 49118 507, https://doi.org/10.1029/91JC01834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, P. Klein, H. Sasaki, and Y. Sasai, 2014: Seasonal mesoscale and submesoscale eddy variability along the North Pacific subtropical countercurrent. J. Phys. Oceanogr., 44, 30793098, https://doi.org/10.1175/JPO-D-14-0071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rocha, C. B., S. Gille, T. Chereskin, and D. Menemenlis, 2016: Seasonality of submesoscale dynamics in the Kuroshio Extension. Geophys. Res. Lett., 43, 11 30411 311, https://doi.org/10.1002/2016GL071349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosso, I., A. Hogg, P. Strutton, A. Kiss, R. Matear, A. Klocker, and E. van Sebille, 2014: Vertical transport in the ocean due to submesoscale structures: Impacts in the Kerguelen region. Ocean Modell., 80, 1023, https://doi.org/10.1016/j.ocemod.2014.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saenz, J. A., R. Tailleux, E. D. Butler, G. O. Hughes, and K. I. Oliver, 2015: Estimating Lorenz’s reference state in an ocean with a nonlinear equation of state for seawater. J. Phys. Oceanogr., 45, 12421257, https://doi.org/10.1175/JPO-D-14-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, H., P. Klein, B. Qiu, and Y. Sasai, 2014: Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere. Nat. Commun., 5, 5636, https://doi.org/10.1038/ncomms6636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, R., J. Gula, R. J. Greatbatch, B. Baschek, and A. Biastoch, 2020: The submesoscale kinetic energy cascade: Mesoscale absorption of submesoscale mixed layer eddies and frontal downscale fluxes. J. Phys. Oceanogr., 50, 25732589, https://doi.org/10.1175/JPO-D-19-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. B., and F. Wang, 2005: Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. J. Phys. Oceanogr., 35, 16501666, https://doi.org/10.1175/JPO2771.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. B., and B. K. Arbic, 2007: Spectral energy fluxes in geostrophic turbulence: Implications for ocean energetics. J. Phys. Oceanogr., 37, 673688, https://doi.org/10.1175/JPO3027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. McWilliams, 2009: Correction and commentary for “Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system.” J. Comput. Phys., 228, 89859000, https://doi.org/10.1016/j.jcp.2009.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shcherbina, A., E. D’Asaro, C. Lee, J. Klymak, M. Molemaker, and J. McWilliams, 2013: Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophys. Res. Lett., 40, 47064711, https://doi.org/10.1002/grl.50919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suzuki, N., B. Fox-Kemper, P. E. Hamlington, and L. P. Van Roekel, 2016: Surface waves affect frontogenesis. J. Geophys. Res. Oceans, 121, 35973624, https://doi.org/10.1002/2015JC011563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tai, C., and W. White, 1990: Eddy variability in the Kuroshio Extension as revealed by Geosat altimetry: Energy propagation away from the jet, Reynolds stress, and seasonal cycle. J. Phys. Oceanogr., 20, 17611777, https://doi.org/10.1175/1520-0485(1990)020<1761:EVITKE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., and R. Ferrari, 2010: Buoyancy and wind-driven convection at mixed layer density fronts. J. Phys. Oceanogr., 40, 12221242, https://doi.org/10.1175/2010JPO4365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L., A. Tandon, and A. Mahadevan, 2008: Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 17–38.

    • Crossref
    • Export Citation
  • Thomas, L., J. Taylor, R. Ferrari, and T. Joyce, 2013: Symmetric instability in the Gulf Stream. Deep-Sea Res. II, 91, 96110, https://doi.org/10.1016/j.dsr2.2013.02.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A., A. Lazar, C. Buckingham, A. Naveira Garabato, G. Damerell, and K. Heywood, 2016: Open-ocean submesoscale motions: A full seasonal cycle of mixed layer instabilities from gliders. J. Phys. Oceanogr., 46, 12851307, https://doi.org/10.1175/JPO-D-15-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres, H., P. Klein, D. Menemenlis, B. Qiu, Z. Su, J. Wang, S. Chen, and L. Fu, 2018: Partitioning ocean motions into balanced motions and internal gravity waves: A modeling study in anticipation of future space missions. J. Geophys. Res. Oceans, 123, 80848105, https://doi.org/10.1029/2018JC014438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulloch, R., J. Marshall, and C. Hill, 2011: Scales, growth rates, and spectral fluxes of baroclinic instability in the ocean. J. Phys. Oceanogr., 41, 10571076, https://doi.org/10.1175/2011JPO4404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villas Boas, A. B., and et al. , 2019: Integrated observations and modeling of winds, currents, and waves: Requirements and challenges for the next decade. Front. Mar. Sci., 6, 425, https://doi.org/10.3389/fmars.2019.00425.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., Z. Jing, H. Liu, and L. Wu, 2018: Spatial and seasonal variations of submesoscale eddies in the eastern tropical Pacific Ocean. J. Phys. Oceanogr., 48, 101116, https://doi.org/10.1175/JPO-D-17-0070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterman, S., N. Hogg, and S. Jayne, 2011: Eddy-mean flow interaction in the Kuroshio Extension region. J. Phys. Oceanogr., 41, 11821208, https://doi.org/10.1175/2010JPO4564.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodruff, S., and et al. , 2011: ICOADS release 2.5: Extensions and enhancements to the surface marine meteorological archive. Int. J. Climatol., 31, 951967, https://doi.org/10.1002/joc.2103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, X., D. Kang, E. N. Curchitser, and C. Pang, 2019: Energetics of eddy-mean flow interactions along the western boundary currents in the North Pacific. J. Phys. Oceanogr., 49, 789810, https://doi.org/10.1175/JPO-D-18-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., P. Chang, B. Qiu, Q. Zhang, L. Wu, Z. Chen, and H. Wang, 2019: Mesoscale air–sea interaction and its role in eddy energy dissipation in the Kuroshio Extension. J. Climate, 32, 86598676, https://doi.org/10.1175/JCLI-D-19-0155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., and X. Liang, 2016: The instabilities and multiscale energetics underlying the mean–interannual–eddy interactions in the Kuroshio Extension region. J. Phys. Oceanogr., 46, 14771494, https://doi.org/10.1175/JPO-D-15-0226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., J. Tian, B. Qiu, W. Zhao, P. Chang, D. Wu, and X. Wan, 2016: Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Sci. Rep., 6, 24349, https://doi.org/10.1038/srep24349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., X. Zhang, B. Qiu, W. Zhao, C. Zhou, X. Huang, and J. Tian, 2021: Submesoscale currents in the subtropical upper ocean observed by long-term high-resolution mooring arrays. J. Phys. Oceanogr., 51, 187206, https://doi.org/10.1175/JPO-D-20-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 306 306 28
Full Text Views 165 165 37
PDF Downloads 216 216 33

Submesoscale Eddies in the Upper Ocean of the Kuroshio Extension from High-Resolution Simulation: Energy Budget

View More View Less
  • 1 a Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources and College of Oceanography, Hohai University, Nanjing, China
  • | 2 b Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island
  • | 3 c State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The submesoscale energy budget is complex and remains understood only in region-by-region analyses. Based on a series of nested numerical simulations, this study investigated the submesoscale energy budget and flux in the upper ocean of the Kuroshio Extension, including some innovations for examining submesoscale energy budgets in general. The highest-resolution simulation on a ~500-m grid resolves a variety of submesoscale instabilities allowing an energetic analysis in the submesoscale range. The frequency–wavenumber spectra of vertical vorticity variance (i.e., enstrophy) and horizontal divergence variance were used to identify the scales of submesoscale flows as distinct from those of inertia–gravity waves but dominating horizontal divergence variance. Next, the energy transfers between the background scales and the submesoscale were examined. The submesoscale kinetic and potential energy (SMKE and SMPE) were mainly contained in the mixed layer and energized through both barotropic (shear production) and baroclinic (buoyancy production) routes. Averaged over the upper 50 m of ROMS2, the baroclinic transfers amounted to approximately 75% of the sources for the SMKE (3.42 × 10−9 W kg−1) versus the remaining 25% (1.12 × 10−9 W kg−1) via barotropic downscale KE transfers. The KE field was greatly strengthened by energy sources through the boundary—this flux is larger than the mesoscale-to-submesoscale transfers in this region. Spectral energy production, importantly, reveals upscale KE transfers at larger submesoscales and downscale KE transfers at smaller submesoscales (i.e., a transition from inverse to forward KE cascade). This study seeks to extend our understanding of the energy cycle to the submesoscale and highlight the forward KE cascade induced by upper-ocean submesoscale activities in the research domain.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhiyou Jing, jingzhiyou@scsio.ac.cn

Abstract

The submesoscale energy budget is complex and remains understood only in region-by-region analyses. Based on a series of nested numerical simulations, this study investigated the submesoscale energy budget and flux in the upper ocean of the Kuroshio Extension, including some innovations for examining submesoscale energy budgets in general. The highest-resolution simulation on a ~500-m grid resolves a variety of submesoscale instabilities allowing an energetic analysis in the submesoscale range. The frequency–wavenumber spectra of vertical vorticity variance (i.e., enstrophy) and horizontal divergence variance were used to identify the scales of submesoscale flows as distinct from those of inertia–gravity waves but dominating horizontal divergence variance. Next, the energy transfers between the background scales and the submesoscale were examined. The submesoscale kinetic and potential energy (SMKE and SMPE) were mainly contained in the mixed layer and energized through both barotropic (shear production) and baroclinic (buoyancy production) routes. Averaged over the upper 50 m of ROMS2, the baroclinic transfers amounted to approximately 75% of the sources for the SMKE (3.42 × 10−9 W kg−1) versus the remaining 25% (1.12 × 10−9 W kg−1) via barotropic downscale KE transfers. The KE field was greatly strengthened by energy sources through the boundary—this flux is larger than the mesoscale-to-submesoscale transfers in this region. Spectral energy production, importantly, reveals upscale KE transfers at larger submesoscales and downscale KE transfers at smaller submesoscales (i.e., a transition from inverse to forward KE cascade). This study seeks to extend our understanding of the energy cycle to the submesoscale and highlight the forward KE cascade induced by upper-ocean submesoscale activities in the research domain.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhiyou Jing, jingzhiyou@scsio.ac.cn
Save