• Alford, M. H., 2003: Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophys. Res. Lett., 30, 1424, https://doi.org/10.1029/2002GL016614.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., M. F. Cronin, and J. M. Klymak, 2012: Annual cycle and depth penetration of wind-generated near-inertial internal waves at Ocean Station Papa in the northeast Pacific. J. Phys. Oceanogr., 42, 889909, https://doi.org/10.1175/JPO-D-11-092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asselin, O., L. N. Thomas, W. R. Young, and L. Rainville, 2020: Refraction and straining of near-inertial waves by barotropic eddies. J. Phys. Oceanogr., 50, 34393454, https://doi.org/10.1175/JPO-D-20-0109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmforth, N. J., S. G. Llewellyn Smith, and W. R. Young, 1998: Enhanced dispersion of near-inertial waves in an idealized geostrophic flow. J. Mar. Res., 56, 140, https://doi.org/10.1357/002224098321836091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barkan, R., K. B. Winters, and J. C. McWilliams, 2017: Stimulated imbalance and the enhancement of eddy kinetic energy dissipation by internal waves. J. Phys. Oceanogr., 47, 181198, https://doi.org/10.1175/JPO-D-16-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, https://doi.org/10.1175/JPO3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1966: The propagation of groups of internal gravity waves in a shear flow. Quart. J. Roy. Meteor. Soc., 92, 466480, https://doi.org/10.1002/qj.49709239403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 1991: The great ocean conveyor. Oceanography, 4, 7989, https://doi.org/10.5670/oceanog.1991.07.

  • Bühler, O., and M. E. McIntyre, 2005: Wave capture and wave–vortex duality. J. Fluid Mech., 534, 6795, https://doi.org/10.1017/S0022112005004374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaigneau, A., O. Pizarro, and W. Rojas, 2008: Global climatology of near-inertial current characteristics from Lagrangian observations. Geophys. Res. Lett., 35, L13603, https://doi.org/10.1029/2008GL034060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cusack, J. M., J. A. Brearley, A. C. Naveira Garabato, D. A. Smeed, K. L. Polzin, N. Velzeboer, and C. J. Shakespeare, 2020: Observed eddy–internal wave interactions in the Southern Ocean. J. Phys. Oceanogr., 50, 30433062, https://doi.org/10.1175/JPO-D-20-0001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. C. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock, and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25, 13611389, https://doi.org/10.1175/JCLI-D-11-00091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., C. Lee, L. Rainville, R. Harcourt, and L. Thomas, 2011: Enhanced turbulence and energy dissipation at ocean fronts. Science, 332, 318322, https://doi.org/10.1126/science.1201515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2001: Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data. J. Geophys. Res., 106, 22 47522 502, https://doi.org/10.1029/2000JC000699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elipot, S., and R. Lumpkin, 2008: Spectral description of oceanic near-surface variability. Geophys. Res. Lett., 35, L05606, https://doi.org/10.1029/2007GL032874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erickson, Z. K., and A. F. Thompson, 2018: The seasonality of physically driven export at submesoscales in the Northeast Atlantic Ocean. Global Biogeochem. Cycles, 32, 11441162, https://doi.org/10.1029/2018GB005927.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, https://doi.org/10.1175/2007JPO3792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., 1976: Observed interaction between oceanic internal waves and mesoscale eddies. Deep-Sea Res. Oceanogr. Abstr., 23, 805820, https://doi.org/10.1016/0011-7471(76)90848-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and T. M. Joyce, 1979: On the internal wave variability during the internal wave experiment (IWEX). J. Geophys. Res., 84, 769776, https://doi.org/10.1029/JC084iC02p00769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furuichi, N., T. Hibiya, and Y. Niwa, 2008: Model-predicted distribution of wind-induced internal wave energy in the world’s oceans. J. Geophys. Res., 113, C09034, https://doi.org/10.1029/2008JC004768.

    • Search Google Scholar
    • Export Citation
  • Gertz, A., and D. N. Straub, 2009: Near-inertial oscillations and the damping of midlatitude gyres: A modeling study. J. Phys. Oceanogr., 39, 23382350, https://doi.org/10.1175/2009JPO4058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., 1984: On the response of the ocean to a moving storm: Parameters and scales. J. Phys. Oceanogr., 14, 5978, https://doi.org/10.1175/1520-0485(1984)014<0059:OTROTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., J. J. Molemaker, and J. C. Mcwilliams, 2014: Submesoscale cold filaments in the Gulf Stream. J. Phys. Oceanogr., 44, 26172643, https://doi.org/10.1175/JPO-D-14-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and et al. , 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and L. C. St. Laurent, 2001: Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett., 28, 811814, https://doi.org/10.1029/2000GL012044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, J., Y. Lu, and W. Perrie, 2005: Estimating the energy flux from the wind to ocean inertial motions: The sensitivity to surface wind fields. Geophys. Res. Lett., 32, L15610, https://doi.org/10.1029/2005GL023289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, Z., and L. Wu, 2014: Intensified diapycnal mixing in the midlatitude western boundary currents. Sci. Rep., 4, 7412, https://doi.org/10.1038/srep07412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, Z., L. Wu, and X. Ma, 2016: Sensitivity of near-inertial internal waves to spatial interpolations of wind stress in ocean generation circulation models. Ocean Modell., 99, 1521, https://doi.org/10.1016/j.ocemod.2015.12.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, Z., P. Chang, S. F. DiMarco, and L. Wu, 2018: Observed energy exchange between low-frequency flows and internal waves in the Gulf of Mexico. J. Phys. Oceanogr., 48, 9951008, https://doi.org/10.1175/JPO-D-17-0263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jochum, M., B. P. Briegleb, G. Danabasoglu, W. G. Large, N. J. Norton, S. R. Jayne, M. H. Alford, and F. O. Bryan, 2013: The impact of oceanic near-inertial waves on climate. J. Climate, 26, 28332844, https://doi.org/10.1175/JCLI-D-12-00181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khatiwala, S., F. Primeau, and T. Hall, 2009: Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature, 462, 346349, https://doi.org/10.1038/nature08526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., and S. L. Smith, 2001: Horizontal dispersion of near-inertial oscillations in a turbulent mesoscale eddy field. J. Mar. Res., 59, 697723, https://doi.org/10.1357/002224001762674908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., S. L. Smith, and G. Lapeyre, 2004: Organization of near-inertial energy by an eddy field. Quart J. Roy. Meteor. Soc., 130, 11531166, https://doi.org/10.1256/QJ.02.231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., 1985: Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544565, https://doi.org/10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, D.-K., and P. P. Niiler, 1998: The inertial chimney: The near-inertial energy drainage from the ocean surface to the deep layer. J. Geophys. Res., 103, 75797591, https://doi.org/10.1029/97JC03200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., Z. Jing, and L. Wu, 2019: Wind power on Oceanic near-inertial Oscillations in the global ocean estimated from surface drifters. Geophys. Res. Lett., 46, 26472653, https://doi.org/10.1029/2018GL081712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and et al. , 2017: Climate process team on internal wave-driven ocean mixing. Bull. Amer. Meteor. Soc., 98, 24292454, https://doi.org/10.1175/BAMS-D-16-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maltrud, M. E., R. D. Smith, A. J. Semtner, and R. C. Malone, 1998: Global eddy-resolving ocean simulations driven by 1985–1995 atmospheric winds. J. Geophys. Res., 103, 30 82530 853, https://doi.org/10.1029/1998JC900013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180, https://doi.org/10.1038/ngeo1391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc., 472A, 20160117, https://doi.org/10.1098/RSPA.2016.0117.

  • Meehl, G. A., and et al. , 2019: Effects of model resolution, physics, and coupling on Southern Hemisphere storm tracks in CESM1. 3. Geophys. Res. Lett., 46, 12 40812 416, https://doi.org/10.1029/2019GL084057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mensa, J. A., Z. Garraffo, A. Griffa, T. M. Özgökmen, A. Haza, and M. Veneziani, 2013: Seasonality of the submesoscale dynamics in the Gulf Stream region. Ocean Dyn., 63, 923941, https://doi.org/10.1007/s10236-013-0633-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mikaloff Fletcher, S. E., and et al. , 2006: Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean. Global Biogeochem. Cycles, 20, GB2002, https://doi.org/10.1029/2005GB002530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, P., 1976: On the diffusion of momentum and mass by internal gravity waves. J. Fluid Mech., 77, 789823, https://doi.org/10.1017/S0022112076002899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagai, T., A. Tandon, E. Kunze, and A. Mahadevan, 2015: Spontaneous generation of near-inertial waves by the Kuroshio front. J. Phys. Oceanogr., 45, 23812406, https://doi.org/10.1175/JPO-D-14-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2011: Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett., 38, L08610, https://doi.org/10.1029/2011GL046576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oka, A., and Y. Niwa, 2013: Pacific deep circulation and ventilation controlled by tidal mixing away from the sea bottom. Nat. Commun., 4, 2419, https://doi.org/10.1038/ncomms3419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olbers, D., and C. Eden, 2013: A global model for the diapycnal diffusivity induced by internal gravity waves. J. Phys. Oceanogr., 43, 17591779, https://doi.org/10.1175/JPO-D-12-0207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. G. H. Philander, 1981: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11, 14431451, https://doi.org/10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plueddemann, A. J., and J. T. Farrar, 2006: Observations and models of the energy flux from the wind to mixed-layer inertial currents. Deep-Sea Res. II, 53, 530, https://doi.org/10.1016/j.dsr2.2005.10.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2010: Mesoscale eddy–internal wave coupling. Part II: Energetics and results from PolyMode. J. Phys. Oceanogr., 40, 789801, https://doi.org/10.1175/2009JPO4039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 8411, https://doi.org/10.1029/JC091iC07p08411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Provenzale, A., 1999: Transport by coherent barotropic vortices. Annu. Rev. Fluid Mech., 31, 5593, https://doi.org/10.1146/annurev.fluid.31.1.55.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rainville, L., and R. Pinkel, 2004: Observations of energetic high-wavenumber internal waves in the Kuroshio. J. Phys. Oceanogr., 34, 14951505, https://doi.org/10.1175/1520-0485(2004)034<1495:OOEHIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renault, L., M. J. Molemaker, J. C. McWilliams, A. F. Shchepetkin, F. Lemarié, D. Chelton, S. Illig, and A. Hall, 2016: Modulation of wind work by oceanic current interaction with the atmosphere. J. Phys. Oceanogr., 46, 16851704, https://doi.org/10.1175/JPO-D-15-0232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rimac, A., J.-S. von Storch, C. Eden, and H. Haak, 2013: The influence of high-resolution wind stress field on the power input to near-inertial motions in the ocean. Geophys. Res. Lett., 40, 48824886, https://doi.org/10.1002/grl.50929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rimac, A., J.-S. von Storch, and C. Eden, 2016: The total energy flux leaving the ocean’s mixed layer. J. Phys. Oceanogr., 46, 18851900, https://doi.org/10.1175/JPO-D-15-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rocha, C. B., G. L. Wagner, and W. R. Young, 2018: Stimulated generation: Extraction of energy from balanced flow by near-inertial waves. J. Phys. Oceanogr., 46, 417451, https://doi.org/10.1017/jfm.2018.308.

    • Search Google Scholar
    • Export Citation
  • Ruddick, B. R., and T. M. Joyce, 1979: Observations of interaction between the internal wavefield and low-frequency flows in the North Atlantic. J. Phys. Oceanogr., 9, 498517, https://doi.org/10.1175/1520-0485(1979)009<0498:OOIBTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siegelman, L., 2020: Energetic submesoscale dynamics in the ocean interior. J. Phys. Oceanogr., 50, 727749, https://doi.org/10.1175/JPO-D-19-0253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siegelman, L., P. Klein, P. Rivière, A. F. Thompson, H. S. Torres, M. Flexas, and D. Menemenlis, 2020: Enhanced upward heat transport at deep submesoscale ocean fronts. Nat. Geosci., 13, 5055, https://doi.org/10.1038/s41561-019-0489-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., and M. H. Alford, 2012: Simulating the long-range swell of internal waves generated by ocean storms. Oceanography, 25, 3041, https://doi.org/10.5670/oceanog.2012.39.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., and H. Simmons, 2006: Estimates of power consumed by mixing in the ocean interior. J. Climate, 19, 48774890, https://doi.org/10.1175/JCLI3887.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, S., and D. Straub, 2016: Forced near-inertial motion and dissipation of low-frequency kinetic energy in a wind-driven channel flow. J. Phys. Oceanogr., 46, 7993, https://doi.org/10.1175/JPO-D-15-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, S., and D. Straub, 2020: Effects of adding forced near-inertial motion to a wind-driven channel flow. J. Phys. Oceanogr., 50, 29832996, https://doi.org/10.1175/JPO-D-19-0299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., L. Rainville, O. Asselin, W. R. Young, J. Girton, C. B. Whalen, L. Centurioni, and V. Hormann, 2020: Direct observations of near-inertial wave ζ-refraction in a dipole vortex. Annu. Rev. Fluid Mech., 45, 147172, https://doi.org/10.1029/2020GL090375.

    • Search Google Scholar
    • Export Citation
  • Vanneste, J., 2013: Balance and spontaneous wave generation in geophysical flows. Annu. Rev. Fluid Mech., 45, 147172, https://doi.org/10.1146/annurev-fluid-011212-140730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and T. Hibiya, 2002: Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Lett., 29, 1239, https://doi.org/10.1029/2001GL014422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weller, R. A., 1982: The relation of near-inertial motions observed in the mixed layer during the JASIN (1978) experiment to the local wind stress and to the quasi-geostrophic flow field. J. Phys. Oceanogr., 12, 11221136, https://doi.org/10.1175/1520-0485(1982)012<1122:TRONIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., J. A. MacKinnon, and L. D. Talley, 2018: Large-scale impacts of the mesoscale environment on mixing from wind-driven internal waves. Nat. Geosci., 11, 842847, https://doi.org/10.1038/s41561-018-0213-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., A. C. N. Garabato, J. M. Klymak, J. A. Mackinnon, and K. L. Sheen, 2020: Internal wave-driven mixing: Governing processes and consequences for climate. Nat. Rev. Earth Environ., 1, 606621, https://doi.org/10.1038/s43017-020-0097-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitt, D. B., and L. N. Thomas, 2013: Near-inertial waves in strongly baroclinic currents. J. Phys. Oceanogr., 43, 706725, https://doi.org/10.1175/JPO-D-12-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitt, D. B., and L. N. Thomas, 2015: Resonant generation and energetics of wind-forced near-inertial motions in a geostrophic flow. J. Phys. Oceanogr., 45, 181208, https://doi.org/10.1175/JPO-D-14-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitt, D. B., L. N. Thomas, J. M. Klymak, C. M. Lee, and E. A. D’Asaro, 2018: Interaction of superinertial waves with submesoscale cyclonic filaments in the North Wall of the Gulf Stream. J. Phys. Oceanogr., 48, 8199, https://doi.org/10.1175/JPO-D-17-0079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, https://doi.org/10.1146/annurev.fluid.36.050802.122121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, J. H., and J. Vanneste, 2015: A generalised-Lagrangian-mean model of the interactions between near-inertial waves and mean flow. J. Fluid Mech., 774, 143169, https://doi.org/10.1017/jfm.2015.251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, X., X.-H. Zhu, C. Pang, and L. Zhang, 2016: Effects of mesoscale eddies on the volume transport and branch pattern of the Kuroshio east of Taiwan. J. Geophys. Res. Oceans, 121, 76837700, https://doi.org/10.1002/2016JC012038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., Z. Jing, and L. Wu, 2018: An assessment of representation of oceanic mesoscale eddy-atmosphere interaction in the current generation of general circulation models and reanalyses. Geophys. Res. Lett., 45, 11 85611 865, https://doi.org/10.1029/2018GL080678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, W. R., and M. B. Jelloul, 1997: Propagation of near-inertial oscillations through a geostrophic flow. J. Mar. Res., 55, 735766, https://doi.org/10.1357/0022240973224283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, X., A. C. Naveira Garabato, A. P. Martin, C. E. Buckingham, L. Brannigan, and Z. Su, 2019: An annual cycle of submesoscale vertical flow and restratification in the upper ocean. J. Phys. Oceanogr., 49, 14391461, https://doi.org/10.1175/JPO-D-18-0253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, X., R. J. Greatbatch, and J. Zhao, 2005: Enhanced vertical propagation of storm-induced near-inertial energy in an eddying ocean channel model. Geophys. Res. Lett., 32, L18602, https://doi.org/10.1029/2005GL023643.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 199 199 53
Full Text Views 112 112 27
PDF Downloads 141 141 31

Energy Flux into Near-Inertial Internal Waves below the Surface Boundary Layer in the Global Ocean

View More View Less
  • 1 a Key Laboratory of Physical Oceanography and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
  • | 2 b Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
  • | 3 c International Laboratory for High-Resolution Earth System Prediction, Texas A&M University, College Station, Texas
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Near-inertial internal waves (NIWs) are thought to play an important role in powering the turbulent diapycnal mixing in the ocean interior. Nevertheless, the energy flux into NIWs below the surface boundary layer (SBL) in the global ocean is still poorly understood. This key problem is addressed in this study based on a Community Earth System Model (CESM) simulation with a horizontal resolution of ~0.1° for its oceanic component and ~0.25° for its atmospheric component. The CESM shows good skill in simulating NIWs globally, reproducing the observed magnitude and spatial pattern of surface NIW currents and wind power on NIWs (WI). The simulated downward flux of NIW energy (FSBL) at the SBL base is positive everywhere. Its quasi-global integral (excluding the region within 5°S–5°N) is 0.13 TW, about one-third the value of WI. The ratio of local FSBL to WI varies substantially over the space. It exhibits an increasing trend with the enstrophy of balanced motions (BMs) and a decreasing trend with WI. The kinetic energy transfer from model-resolved BMs to NIWs is positive from the SBL base to 600 m but becomes negative farther downward. The quasi-global integral of energy transfer below the SBL base is two orders of magnitude smaller than that of FSBL, suggesting the resolved BMs in the CESM simulations making negligible contributions to power NIWs in the ocean interior.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shengpeng Wang, wangshengpeng@ouc.edu.cn

Abstract

Near-inertial internal waves (NIWs) are thought to play an important role in powering the turbulent diapycnal mixing in the ocean interior. Nevertheless, the energy flux into NIWs below the surface boundary layer (SBL) in the global ocean is still poorly understood. This key problem is addressed in this study based on a Community Earth System Model (CESM) simulation with a horizontal resolution of ~0.1° for its oceanic component and ~0.25° for its atmospheric component. The CESM shows good skill in simulating NIWs globally, reproducing the observed magnitude and spatial pattern of surface NIW currents and wind power on NIWs (WI). The simulated downward flux of NIW energy (FSBL) at the SBL base is positive everywhere. Its quasi-global integral (excluding the region within 5°S–5°N) is 0.13 TW, about one-third the value of WI. The ratio of local FSBL to WI varies substantially over the space. It exhibits an increasing trend with the enstrophy of balanced motions (BMs) and a decreasing trend with WI. The kinetic energy transfer from model-resolved BMs to NIWs is positive from the SBL base to 600 m but becomes negative farther downward. The quasi-global integral of energy transfer below the SBL base is two orders of magnitude smaller than that of FSBL, suggesting the resolved BMs in the CESM simulations making negligible contributions to power NIWs in the ocean interior.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shengpeng Wang, wangshengpeng@ouc.edu.cn
Save