• Beckmann, A., and H. Goosse, 2003: A parameterization of ice shelf–ocean interaction for climate models. Ocean Modell., 5, 157170, https://doi.org/10.1016/S1463-5003(02)00019-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bezanson, J., A. Edelman, S. Karpinski, and V. B. Shah, 2017: Julia: A fresh approach to numerical computing. SIAM Rev., 59, 6598, https://doi.org/10.1137/141000671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biddle, L. C., B. Loose, and K. J. Heywood, 2019: Upper ocean distribution of glacial meltwater in the Amundsen Sea, Antarctica. J. Geophys. Res. Oceans, 124, 68546870, https://doi.org/10.1029/2019JC015133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bintanja, R., G. Van Oldenborgh, S. Drijfhout, B. Wouters, and C. Katsman, 2013: Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat. Geosci., 6, 376379, https://doi.org/10.1038/ngeo1767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bintanja, R., G. Van Oldenborgh, and C. Katsman, 2015: The effect of increased fresh water from Antarctic ice shelves on future trends in Antarctic sea ice. Ann. Glaciol., 56, 120126, https://doi.org/10.3189/2015AoG69A001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bronselaer, B., M. Winton, S. M. Griffies, W. J. Hurlin, K. B. Rodgers, O. V. Sergienko, R. J. Stouffer, and J. L. Russell, 2018: Change in future climate due to Antarctic meltwater. Nature, 564, 5358, https://doi.org/10.1038/s41586-018-0712-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carroll, D., D. A. Sutherland, E. L. Shroyer, J. D. Nash, G. A. Catania, and L. A. Stearns, 2015: Modeling turbulent subglacial meltwater plumes: Implications for fjord-scale buoyancy-driven circulation. J. Phys. Oceanogr., 45, 21692185, https://doi.org/10.1175/JPO-D-15-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cowton, T., D. Slater, A. Sole, D. Goldberg, and P. Nienow, 2015: Modeling the impact of glacial runoff on fjord circulation and submarine melt rate using a new subgrid-scale parameterization for glacial plumes. J. Geophys. Res. Oceans, 120, 796812, https://doi.org/10.1002/2014JC010324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Rydt, J., P. Holland, P. Dutrieux, and A. Jenkins, 2014: Geometric and oceanographic controls on melting beneath Pine Island Glacier. J. Geophys. Res. Oceans, 119, 24202438, https://doi.org/10.1002/2013JC009513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dutrieux, P., D. G. Vaughan, H. F. Corr, A. Jenkins, P. R. Holland, I. Joughin, and A. Fleming, 2013: Pine Island glacier ice shelf melt distributed at kilometre scales. Cryosphere, 7, 15431555, https://doi.org/10.5194/tc-7-1543-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dutrieux, P., C. Stewart, A. Jenkins, K. W. Nicholls, H. F. Corr, E. Rignot, and K. Steffen, 2014a: Basal terraces on melting ice shelves. Geophys. Res. Lett., 41, 55065513, https://doi.org/10.1002/2014GL060618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dutrieux, P., and et al. , 2014b: Strong sensitivity of Pine Island ice-shelf melting to climatic variability. Science, 343, 174178, https://doi.org/10.1126/science.1244341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ezhova, E., C. Cenedese, and L. Brandt, 2018: Dynamics of three-dimensional turbulent wall plumes and implications for estimates of submarine glacier melting. J. Phys. Oceanogr., 48, 19411950, https://doi.org/10.1175/JPO-D-17-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabregat Tomàs, A., A. C. Poje, T. M. Özgökmen, and W. K. Dewar, 2016: Effects of rotation on turbulent buoyant plumes in stratified environments. J. Geophys. Res. Oceans, 121, 53975417, https://doi.org/10.1002/2016JC011737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golledge, N. R., E. D. Keller, N. Gomez, K. A. Naughten, J. Bernales, L. D. Trusel, and T. L. Edwards, 2019: Global environmental consequences of twenty-first-century ice-sheet melt. Nature, 566, 6572, https://doi.org/10.1038/s41586-019-0889-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gourmelen, N., and et al. , 2017: Channelized melting drives thinning under a rapidly melting Antarctic ice shelf. Geophys. Res. Lett., 44, 97969804, https://doi.org/10.1002/2017GL074929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grosfeld, K., R. Gerdes, and J. Determann, 1997: Thermohaline circulation and interaction between ice shelf cavities and the adjacent open ocean. J. Geophys. Res., 102, 15 59515 610, https://doi.org/10.1029/97JC00891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haine, T. W., and J. Marshall, 1998: Gravitational, symmetric, and baroclinic instability of the ocean mixed layer. J. Phys. Oceanogr., 28, 634658, https://doi.org/10.1175/1520-0485(1998)028<0634:GSABIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., and et al. , 2016: Ice melt, sea level rise and superstorms: Evidence from paleoclimate data, climate modeling, and modern observations that 2°C global warming is highly dangerous. Atmos. Chem. Phys., 16, 37613812, https://doi.org/10.5194/acp-16-3761-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helfrich, K. R., and T. M. Battisti, 1991: Experiments on baroclinic vortex shedding from hydrothermal plumes. J. Geophys. Res., 96, 12 51112 518, https://doi.org/10.1029/90JC02643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heywood, K. J., and et al. , 2016: Between the devil and the deep blue sea: The role of the Amundsen Sea continental shelf in exchanges between ocean and ice shelves. Oceanography, 29, 118129, https://doi.org/10.5670/oceanog.2016.104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, P. R., D. L. Feltham, and A. Jenkins, 2007: Ice shelf water plume flow beneath Filchner-Ronne Ice Shelf, Antarctica. J. Geophys. Res., 112, C05044, https://doi.org/10.1029/2006JC003915.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 1993: Real freshwater flux as a natural boundary condition for the salinity balance and thermohaline circulation forced by evaporation and precipitation. J. Phys. Oceanogr., 23, 24282446, https://doi.org/10.1175/1520-0485(1993)023<2428:RFFAAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, R., and et al. , 2020: Meltwater intrusions reveal mechanisms for rapid submarine melt at a tidewater glacier. Geophys. Res. Lett., 47, e2019GL085335, https://doi.org/10.1029/2019GL085335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., A. Jenkins, C. F. Giulivi, and P. Dutrieux, 2011: Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nat. Geosci., 4, 519523, https://doi.org/10.1038/ngeo1188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, A., 1991: A one-dimensional model of ice shelf-ocean interaction. J. Geophys. Res., 96, 20 67120 677, https://doi.org/10.1029/91JC01842.

  • Jenkins, A., 2011: Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. J. Phys. Oceanogr., 41, 22792294, https://doi.org/10.1175/JPO-D-11-03.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, A., P. Dutrieux, S. S. Jacobs, S. D. McPhail, J. R. Perrett, A. T. Webb, and D. White, 2010: Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nat. Geosci., 3, 468472, https://doi.org/10.1038/ngeo890.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, H., and J. A. Breier, 2014: Physical controls on mixing and transport within rising submarine hydrothermal plumes: A numerical simulation study. Deep-Sea Res. I, 92, 4155, https://doi.org/10.1016/j.dsr.2014.06.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, J. M., and et al. , 2016: Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nat. Climate Change, 6, 917926, https://doi.org/10.1038/nclimate3103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, I., D. Hahm, T. S. Rhee, T. W. Kim, C.-S. Kim, and S. Lee, 2016: The distribution of glacial meltwater in the Amundsen Sea, Antarctica, revealed by dissolved helium and neon. J. Geophys. Res. Oceans, 121, 16541666, https://doi.org/10.1002/2015JC011211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimura, S., P. R. Holland, A. Jenkins, and M. Piggott, 2014: The effect of meltwater plumes on the melting of a vertical glacier face. J. Phys. Oceanogr., 44, 30993117, https://doi.org/10.1175/JPO-D-13-0219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kostov, Y., D. Ferreira, K. C. Armour, and J. Marshall, 2018: Contributions of greenhouse gas forcing and the southern annular mode to historical southern ocean surface temperature trends. Geophys. Res. Lett., 45, 10861097, https://doi.org/10.1002/2017GL074964.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavelle, J., 1995: The initial rise of a hydrothermal plume from a line segment source––Results from a three-dimensional numerical model. Geophys. Res. Lett., 22, 159162, https://doi.org/10.1029/94GL01463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazeroms, W., A. Jenkins, H. Gudmundsson, and R. van de Wal, 2018: Modelling present-day basal melt rates for Antarctic ice shelves using a parametrization of buoyant meltwater plumes. Cryosphere, 12, 4970, https://doi.org/10.5194/tc-12-49-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loose, B., P. Schlosser, W. Smethie, and S. Jacobs, 2009: An optimized estimate of glacial melt from the Ross Ice Shelf using noble gases, stable isotopes, and CFC transient tracers. J. Geophys. Res., 114, C08007, https://doi.org/10.1029/2008JC005048.

    • Search Google Scholar
    • Export Citation
  • Losch, M., 2008: Modeling ice shelf cavities in a z-coordinate ocean general circulation model. J. Geophys. Res., 113, C08043, https://doi.org/10.1029/2007JC004368.

    • Search Google Scholar
    • Export Citation
  • MacAyeal, D. R., 1985: Evolution of tidally triggered meltwater plumes below ice shelves. Oceanology of the Antarctic Continental Shelf, S. S. Jacobs, Ed., Antarctic Research Series, Vol. 43, Amer. Geophys. Union, 133–143, https://doi.org/10.1029/AR043p0133.

    • Crossref
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mathiot, P., A. Jenkins, C. Harris, and G. Madec, 2017: Explicit representation and parametrised impacts of under ice shelf seas in the z* coordinate ocean model NEMO 3.6. Geosci. Model Dev., 10, 28492874, https://doi.org/10.5194/gmd-10-2849-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morton, B., G. I. Taylor, and J. S. Turner, 1956: Turbulent gravitational convection from maintained and instantaneous sources. Proc. Roy. Soc. London, 234A, 123, https://doi.org/10.1098/rspa.1956.0011.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., and et al. , 2017: Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf. Nature, 542, 219222, https://doi.org/10.1038/nature20825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olbers, D., and H. Hellmer, 2010: A box model of circulation and melting in ice shelf caverns. Ocean Dyn., 60, 141153, https://doi.org/10.1007/s10236-009-0252-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paolo, F. S., H. A. Fricker, and L. Padman, 2015: Volume loss from Antarctic ice shelves is accelerating. Science, 348, 327331, https://doi.org/10.1126/science.aaa0940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauling, A. G., C. M. Bitz, I. J. Smith, and P. J. Langhorne, 2016: The response of the Southern Ocean and Antarctic sea ice to freshwater from ice shelves in an Earth system model. J. Climate, 29, 16551672, https://doi.org/10.1175/JCLI-D-15-0501.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pelle, T., M. Morlighem, and J. H. Bondzio, 2019: Brief communication: PICOP, a new ocean melt parameterization under ice shelves combining PICO and a plume model. Cryosphere, 13, 10431049, https://doi.org/10.5194/tc-13-1043-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prince, P. J., and J. R. Dormand, 1981: High order embedded Runge-Kutta formulae. J. Comput. Appl. Math., 7, 6775, https://doi.org/10.1016/0771-050X(81)90010-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramadhan, A., and et al. , 2020: Oceananigans.jl: Fast and friendly geophysical fluid dynamics on GPUs. J. Open Source Softw., 5, 2018, https://doi.org/10.21105/joss.02018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reese, R., T. Albrecht, M. Mengel, X. Asay-Davis, and R. Winkelmann, 2018: Antarctic sub-shelf melt rates via PICO. Cryosphere, 12, 19691985, https://doi.org/10.5194/tc-12-1969-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rignot, E., J. Mouginot, B. Scheuchl, M. van den Broeke, M. J. van Wessem, and M. Morlighem, 2019: Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proc. Natl. Acad. Sci. USA, 116, 10951103, https://doi.org/10.1073/pnas.1812883116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roquet, F., G. Madec, L. Brodeau, and J. Nycander, 2015: Defining a simplified yet “realistic” equation of state for seawater. J. Phys. Oceanogr., 45, 25642579, https://doi.org/10.1175/JPO-D-15-0080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozema, W., H. J. Bae, P. Moin, and R. Verstappen, 2015: Minimum-dissipation models for large-eddy simulation. Phys. Fluids, 27, 085107, https://doi.org/10.1063/1.4928700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rye, C. D., A. C. N. Garabato, P. R. Holland, M. P. Meredith, A. G. Nurser, C. W. Hughes, A. C. Coward, and D. J. Webb, 2014: Rapid sea-level rise along the Antarctic margins in response to increased glacial discharge. Nat. Geosci., 7, 732735, https://doi.org/10.1038/ngeo2230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rye, C. D., J. Marshall, M. Kelley, G. Russell, L. S. Nazarenko, Y. Kostov, G. A. Schmidt, and J. Hansen, 2020: Antarctic glacial melt as a driver of recent Southern Ocean climate trends. Geophys. Res. Lett., 47, e2019GL086892, https://doi.org/10.1029/2019GL086892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sciascia, R., F. Straneo, C. Cenedese, and P. Heimbach, 2013: Seasonal variability of submarine melt rate and circulation in an East Greenland fjord. J. Geophys. Res. Oceans, 118, 24922506, https://doi.org/10.1002/jgrc.20142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shean, D. E., I. R. Joughin, P. Dutrieux, B. E. Smith, and E. Berthier, 2019: Ice shelf basal melt rates from a high-resolution digital elevation model (DEM) record for Pine Island Glacier, Antarctica. Cryosphere, 13, 26332656, https://doi.org/10.5194/tc-13-2633-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slater, D., P. Nienow, T. Cowton, D. Goldberg, and A. Sole, 2015: Effect of near-terminus subglacial hydrology on tidewater glacier submarine melt rates. Geophys. Res. Lett., 42, 28612868, https://doi.org/10.1002/2014GL062494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slater, D., D. N. Goldberg, P. W. Nienow, and T. R. Cowton, 2016: Scalings for submarine melting at tidewater glaciers from buoyant plume theory. J. Phys. Oceanogr., 46, 18391855, https://doi.org/10.1175/JPO-D-15-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Speer, K. G., and J. Marshall, 1995: The growth of convective plumes at seafloor hot springs. J. Mar. Res., 53, 10251057, https://doi.org/10.1357/0022240953212972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straneo, F., G. S. Hamilton, D. A. Sutherland, L. A. Stearns, F. Davidson, M. O. Hammill, G. B. Stenson, and A. Rosing-Asvid, 2010: Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland. Nat. Geosci., 3, 182186, https://doi.org/10.1038/ngeo764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swart, N., and J. Fyfe, 2013: The influence of recent Antarctic ice sheet retreat on simulated sea ice area trends. Geophys. Res. Lett., 40, 43284332, https://doi.org/10.1002/grl.50820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurnherr, A. M., S. Jacobs, P. Dutrieux, and C. Giulivi, 2014: Export and circulation of ice cavity water in Pine Island Bay, West Antarctica. J. Geophys. Res. Oceans, 119, 17541764, https://doi.org/10.1002/2013JC009307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, R., and et al. , 2010: A consistent data set of Antarctic ice sheet topography, cavity geometry, and global bathymetry. Earth Syst. Sci. Data, 2, 261273, https://doi.org/10.5194/essd-2-261-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., 1986: Turbulent entrainment: The development of the entrainment assumption, and its application to geophysical flows. J. Fluid Mech., 173, 431471, https://doi.org/10.1017/S0022112086001222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., T. J. Bracegirdle, T. Phillips, G. J. Marshall, and J. S. Hosking, 2013: An initial assessment of Antarctic sea ice extent in the CMIP5 models. J. Climate, 26, 14731484, https://doi.org/10.1175/JCLI-D-12-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp., https://doi.org/10.1017/9781107588417.

    • Crossref
    • Export Citation
  • Verstappen, R., 2018: How much eddy dissipation is needed to counterbalance the nonlinear production of small, unresolved scales in a large-eddy simulation of turbulence? Comput. Fluids, 176, 276284, https://doi.org/10.1016/j.compfluid.2016.12.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vreugdenhil, C. A., and J. R. Taylor, 2018: Large-eddy simulations of stratified plane Couette flow using the anisotropic minimum-dissipation model. Phys. Fluids, 30, 085104, https://doi.org/10.1063/1.5037039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Y., E. Rignot, D. Menemenlis, and M. Koppes, 2012: Numerical experiments on subaqueous melting of Greenland tidewater glaciers in response to ocean warming and enhanced subglacial discharge. Ann. Glaciol., 53, 229234, https://doi.org/10.3189/2012AoG60A139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Y., E. Rignot, I. Fenty, D. Menemenlis, and M. M. Flexas, 2013: Subaqueous melting of Store Glacier, west Greenland from three-dimensional, high-resolution numerical modeling and ocean observations. Geophys. Res. Lett., 40, 46484653, https://doi.org/10.1002/grl.50825.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 461 461 32
Full Text Views 70 70 13
PDF Downloads 108 108 16

On the Settling Depth of Meltwater Escaping from beneath Antarctic Ice Shelves

View More View Less
  • 1 a Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
  • | 2 b British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
  • | 3 c Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York
  • | 4 d Goddard Institute for Space Studies, New York City, New York
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Antarctic glacial meltwater is thought to play an important role in determining large-scale Southern Ocean climate trends, yet recent modeling efforts have proceeded without a good understanding of how its vertical distribution in the water column is set. To rectify this, here we conduct new large-eddy simulations of the ascent of a buoyant meltwater plume after its escape from beneath an Antarctic ice shelf. We find that the meltwater’s settling depth is primarily a function of the buoyancy forcing per unit width of the source and the ambient stratification, consistent with the classical theory of turbulent buoyant plumes and in contrast to previous work that suggested an important role for centrifugal instability. Our results further highlight the significant role played by localized variability in stratification; this helps explain observed interannual variability in the vertical meltwater distribution near Pine Island Glacier. Because of the vast heterogeneity in mass loss rates and ambient conditions at different Antarctic ice shelves, a dynamic parameterization of meltwater settling depth may be crucial for accurately simulating high-latitude climate in a warming world; we discuss how this may be developed following this work, and where the remaining challenges lie.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Constantin W. Arnscheidt, cwa@mit.edu

Abstract

Antarctic glacial meltwater is thought to play an important role in determining large-scale Southern Ocean climate trends, yet recent modeling efforts have proceeded without a good understanding of how its vertical distribution in the water column is set. To rectify this, here we conduct new large-eddy simulations of the ascent of a buoyant meltwater plume after its escape from beneath an Antarctic ice shelf. We find that the meltwater’s settling depth is primarily a function of the buoyancy forcing per unit width of the source and the ambient stratification, consistent with the classical theory of turbulent buoyant plumes and in contrast to previous work that suggested an important role for centrifugal instability. Our results further highlight the significant role played by localized variability in stratification; this helps explain observed interannual variability in the vertical meltwater distribution near Pine Island Glacier. Because of the vast heterogeneity in mass loss rates and ambient conditions at different Antarctic ice shelves, a dynamic parameterization of meltwater settling depth may be crucial for accurately simulating high-latitude climate in a warming world; we discuss how this may be developed following this work, and where the remaining challenges lie.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Constantin W. Arnscheidt, cwa@mit.edu
Save