• Ardhuin, F., and et al. , 2010: Semi-empirical dissipation source functions for ocean waves: Part I: Definition, calibration and validation. J. Phys. Oceanogr., 40, 19171941, https://doi.org/10.1175/2010JPO4324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., 2011: Breaking and Dissipation of Ocean Surface Waves. Cambridge University Press, 480 pp.

  • Babanin, A. V., M. L. Banner, I. R. Young, and M. A. Donelan, 2007: Wave follower field measurements of the wind input spectral function. Part III: Parameterization of the wind input enhancement due to wave breaking. J. Phys. Oceanogr., 37, 27642775, https://doi.org/10.1175/2007JPO3757.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beal, R. C., T. W. Gerling, D. E. Irvine, F. M. Monaldo, and D. G. Tilley, 1986: Spatial variations of ocean wave directional spectra from the Seasat synthetic aperture radar. J. Geophys. Res., 91, 24332449, https://doi.org/10.1029/JC091iC02p02433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bidlot, J.-R., 2012: Present status of wave forecasting at E.C.M.W.F. ECMWF Workshop on Ocean Waves, Reading, United Kingdom, ECMWF, 16 pp., https://www.ecmwf.int/sites/default/files/elibrary/2012/8234-present-status-wave-forecasting-ecmwf.pdf.

  • Bidlot, J.-R., P. Janssen, and S. Abdalla, 2007: A revised formulation of ocean wave dissipation and its model impact. ECMWF Tech. Memo. 509, 29 pp., https://www.ecmwf.int/sites/default/files/elibrary/2007/8228-revised-formulation-ocean-wave-dissipation-and-its-model-impact.pdf.

  • Black, J. L., 1979: Hurricane Eloise directional wave energy spectra. Proc. 11th Offshore Technology Conf., Houston, TX, Offshore Technology Conference, OTC-3594-MS, https://doi.org/10.4043/3594-MS.

    • Crossref
    • Export Citation
  • Black, P. G., and et al. , 2007: Air–sea exchange in hurricanes: Synthesis of observations from the coupled boundary layer air–sea transfer experiment. Bull. Amer. Meteor. Soc., 88, 357374, https://doi.org/10.1175/BAMS-88-3-357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretschneider, C. L., 1972: A non-dimensional stationary hurricane wave model. Proc. Fourth Offshore Technology Conf., Houston, TX, Offshore Technology Conference, OTC-1517-MS, https://doi.org/10.4043/1517-MS.

    • Crossref
    • Export Citation
  • Cavaleri, L., and et al. , 2007: Wave modelling—The state of the art. Prog. Oceanogr., 75, 603674, https://doi.org/10.1016/j.pocean.2007.05.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, C. O., H. Potter, B. Lund, H. Tamura, and H. C. Graber, 2018: Directional wave spectra observed during intense tropical cyclones. J. Geophys. Res., 123, 773793, https://doi.org/10.1002/2017JC012943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., M. Hamilton, and W. Hui, 1985: Directional spectra of wind-generated waves. Philos. Trans. Roy. Soc., A315, 509562, https://doi.org/10.1098/rsta.1985.0054.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., A. V. Babanin, I. R. Young, and M. L. Banner, 2006: Wave-Follower field measurements of the wind-input spectral function. Part II: Parameterization of the wind input. J. Phys. Oceanogr., 36, 16721689, https://doi.org/10.1175/JPO2933.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elachi, C., T. W. Thompson, and D. B. King, 1977: Observations of the ocean wave pattern under Hurricane Gloria with synthetic aperture radar. Science, 198, 609610, https://doi.org/10.1126/science.198.4317.609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, D., C. L. Conrad, and F. M. Paul, 2003: Handbook of automated data quality control checks and procedures of the National Data Buoy Center. NOAA/National Data Buoy Center Tech. Doc. 03-02, 44 pp.

  • Gonzalez, F. I., T. E. Thompson, W. E. Brown, and D. E. Weissman, 1978: Seasat wind and wave observations of Northeast Pacific Hurricane Iva, 13 August 1978. J. Geophys. Res., 87, 34313438, https://doi.org/10.1029/JC087iC05p03431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1962: On the non-linear energy transfer in a gravity-wave spectrum Part 1. General theory. J. Fluid Mech., 12, 481500, https://doi.org/10.1017/S0022112062000373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., and et al. , 1973: Measurements of wind-wave growth and swell decay during the Joint North SeaWave Project (JONSWAP). Hydraulic Engineering Rep., Deutches Hydrographisches Institute, Hamburg, Germany, 95 pp.

  • Hasselmann, S., K. Hasselmann, J. H. Allender, and T. P. Barnett, 1985: Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: Parameterizations of the nonlinear energy transfer for application in wave models. J. Phys. Oceanogr., 15, 13781391, https://doi.org/10.1175/1520-0485(1985)015<1378:CAPOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1980: An analytical model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108, 12121218, https://doi.org/10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 2008: A revised hurricane pressure–wind model. Mon. Wea. Rev., 136, 34323445, https://doi.org/10.1175/2008MWR2395.1.

  • Holland, G. J., J. I. Belanger, and A. Fritz, 2010: A revised model for radial profiles of hurricane winds. Mon. Wea. Rev., 138, 43934401, https://doi.org/10.1175/2010MWR3317.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holt, B., and F. I. Gonzalez, 1986: SIR-B observations of dominant ocean waves near Hurricane Josephine. J. Geophys. Res., 91, 85958598, https://doi.org/10.1029/JC091iC07p08595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, K. and Q. Chen, 2011: Directional spectra of hurricane-generated waves in the Gulf of Mexico. Geophys. Rev. Lett., 38, L19608, https://doi.org/10.1029/2011GL049145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2016: Fetch- and duration-limited nature of surface wave growth inside tropical cyclones: With applications to air-sea exchange and remote sensing. J. Phys. Oceanogr., 46, 4156, https://doi.org/10.1175/JPO-D-15-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and E. J. Walsh, 2016: Azimuthal and radial variation of wind-generated surface waves inside tropical cyclones. J. Phys. Oceanogr., 46, 26052621, https://doi.org/10.1175/JPO-D-16-0051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and Y. Fan, 2017: Effective fetch and duration of tropical cyclone wind fields estimated from simultaneous wind and wave measurements: Surface wave and air-sea exchange computation. J. Phys. Oceanogr., 47, 447470, https://doi.org/10.1175/JPO-D-16-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and E. J. Walsh, 2018a: Propagation directions of ocean surface waves inside tropical cyclones. J. Phys. Oceanogr., 48, 14951511, https://doi.org/10.1175/JPO-D-18-0015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and E. J. Walsh, 2018b: Estimating maximum significant wave height and dominant wave period inside tropical cyclones. Wea. Forecasting, 33, 955966, https://doi.org/10.1175/WAF-D-17-0186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., Y. Fan, F. J. Ocampo-Torres, and H. García-Nava, 2017: Ocean surface wave spectra inside tropical cyclones. J. Phys. Oceanogr., 47, 23932417, https://doi.org/10.1175/JPO-D-17-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 1991: Quasi-linear theory of wind-wave generation applied to wave forecasting. J. Phys. Oceanogr., 21, 16311642, https://doi.org/10.1175/1520-0485(1991)021<1631:QLTOWW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 2004: The Interaction of Ocean Waves and Wind. Cambridge University Press, 312 pp.

    • Crossref
    • Export Citation
  • King, D. B., and O. H. Shemdin, 1978: Radar observations of hurricane wave directions. 16th Int. Conf. Coastal Engineering, Hamburg, Germany, ASCE, 209–226, https://doi.org/10.1061/9780872621909.012.

    • Crossref
    • Export Citation
  • Klotz, B. W., and H. Jiang, 2016: Global composites of surface wind speeds in tropical cyclones based on a 12 year scatterometer database. Geophys. Res. Lett., 43, 10 48010 488, https://doi.org/10.1002/2016GL071066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotz, B. W., and H. Jiang, 2017: Examination of surface wind asymmetries in tropical cyclones. Part I: General structure and wind shear impacts. Mon. Wea. Rev., 145, 39894009, https://doi.org/10.1175/MWR-D-17-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komen, G. J., S. Hasselmann, and K. Hasselmann, 1984: On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr., 14, 12711285, https://doi.org/10.1175/1520-0485(1984)014<1271:OTEOAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leckler, F., F. Ardhuin, J. F. Filipot, and A. Mironov, 2013: Dissipation source terms and whitecap statistics. Ocean Modell., 70, 6274, https://doi.org/10.1016/j.ocemod.2013.03.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., A. Babanin, Y. Fan, S. Zieger, C. Guan, and I.-J. Moon, 2017: Numerical simulations of ocean surface waves under hurricane conditions: Assessment of existing model performance. Ocean Modell., 118, 7393, https://doi.org/10.1016/j.ocemod.2017.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., D. E. Cartwright, and N. D. Smith, 1963: Observations of the directional spectrum of sea waves using the motion of a floating buoy. Ocean Wave Spectra, Prentice-Hall, 111136.

  • McLeish, W., and D. B. Ross, 1983: Imaging radar observations of directional properties of ocean waves. J. Geophys. Res., 88, 44074419, https://doi.org/10.1029/JC088iC07p04407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, I.-J., I. Ginis, and T. Hara, 2003: Numerical simulation of sea surface directional wave spectra under typhoon wind forcing. J. Phys. Oceanogr., 33, 16801706, https://doi.org/10.1175/2410.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ochi, M. K., 1993: On hurricane-generated seas. Proc. Second Int. Symp. on Ocean Wave Measurement and Analysis, New Orleans, LA, ASCE, 374–387.

  • Ochi, M. K., and M. H. Chiu, 1982: Nearshore wave spectra measured during Hurricane David. Coastal Engineering 1982, B. L. Edge, Ed., ASCE, 77–86.

    • Crossref
    • Export Citation
  • Olfateh, M., D. P. Callaghan, P. Nielsen, and T. E. Baldock, 2017: Tropical cyclone asymmetry—Development and evaluation of a new parametric model. J. Geophys. Res. Oceans, 122, 458469, https://doi.org/10.1002/2016JC012237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patterson, M. M., 1974: Oceanographic data from Hurricane Camille. Proc. Sixth Offshore Technology Conf., Houston, TX, OTC-2109-MS, https://doi.org/10.4043/2109-MS.

    • Crossref
    • Export Citation
  • Perrie, W. B., D. T. Toulany, A. Resio, J. P. Roland, and J. P. Auclair, 2013: A two-scale approximation for wave-wave interactions in an operational wave model. Ocean Modell., 70, 3851, https://doi.org/10.1016/j.ocemod.2013.06.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1982: The transition of the Hurricane Frederic boundary-layer wind field from the open Gulf of Mexico to landfall. Mon. Wea. Rev., 110, 19121932, https://doi.org/10.1175/1520-0493(1982)110<1912:TTOTHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Resio, D. T., and W. Perrie, 2008: A two-scale approximation for efficient representation of nonlinear energy transfers in a wind wave spectrum. Part I: Theoretical development. J. Phys. Oceanogr., 38, 28012816, https://doi.org/10.1175/2008JPO3713.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, W. E., and G. P. van Vledder, 2013: Frequency width in predictions of windsea spectra and the role of the nonlinear solver. Ocean Modell., 70, 5261, https://doi.org/10.1016/j.ocemod.2012.11.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, W. E., A. V. Babanin, and D. W. Wang, 2012: Observation-consistent input and whitecapping dissipation in a model for wind-generated surface waves: Description and simple calculations. J. Atmos. Oceanic Technol., 29, 13291346, https://doi.org/10.1175/JTECH-D-11-00092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ross, D. B., 1976: A simplified model for forecasting hurricane generated waves. Bull. Amer. Meteor. Soc., 7, 113, https://doi.org/10.1175/1520-0477-57.1.95.

    • Search Google Scholar
    • Export Citation
  • Tamizi, A., and I. R. Young, 2020: The spatial distribution of ocean waves in tropical cyclones. J. Phys. Oceang, 50, 21232139, https://doi.org/10.1175/JPO-D-20-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamizi, A., I. R. Young, A. Ribal, and J.-H. Alves, 2020: Global scatterometer observations of the structure of tropical cyclone wind fields. Mon. Wea. Rev., 148, 46734692, https://doi.org/10.1175/MWR-D-20-0196.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., 1991: A third-generation model for wind waves on slowly varying, un- steady, and inhomogeneous depths and currents. J. Phys. Oceanogr., 21, 782797, https://doi.org/10.1175/1520-0485(1991)021<0782:ATGMFW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., 2002: Validation of WAVEWATCH III version 1.15 for a global domain. NOAA/NWS/NCEP/OMB Tech. Rep. 213, 33 pp.

  • Tolman, H. L., 2013: A generalized multiple discrete interaction approximation for resonant four-wave interactions in wind wave models. Ocean Modell., 70, 1124, https://doi.org/10.1016/j.ocemod.2013.02.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., and J.-H. G. M. Alves, 2005: Numerical modeling of wind waves generated by tropical cyclones using moving grids. Ocean Modell., 9, 305323, https://doi.org/10.1016/j.ocemod.2004.09.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • U.S. Army Corp of Engineers, 1977: Shore Protection Manual: Volume I,II,III—Three Volumes, U.S. Army Coastal Engineering Research Center, 575 pp..

  • Walsh, E. J., and et al. , 2002: Hurricane directional wave spectrum spatial variation at landfall. J. Phys. Oceanogr., 32, 16671684, https://doi.org/10.1175/1520-0485(2002)032<1667:HDWSSV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, E. J., C. W. Fairall, and I. PopStefanija, 2021: In the eye of the storm. J. Phys. Oceanogr., 51, 18351842, https://doi.org/10.1175/JPO-D-20-0219.1.

    • Search Google Scholar
    • Export Citation
  • WAVEWATCH III Development Group, 2019: User manual and system documentation of WAVEWATCH III version 6.07. Tech. Note 333, NOAA/NWS/NCEP/MMAB, 465 pp.

  • Whalen, J. E., and M. K. Ochi, 1978: Variability of wave spectral shapes associated with hurricanes. Proc. 10th Offshore Technology Conf., Houston, TX, Offshore Technology Conference, OTC-3228-MS, https://doi.org/10.4043/3228-MS.

    • Crossref
    • Export Citation
  • Willoughby, H. E., R. W. R. Darling, and M. E. Rahn, 2006: Parametric representation of the primary hurricane vortex. Part II: A new family of sectionally continuous profiles. Mon. Wea. Rev., 134, 11021120, https://doi.org/10.1175/MWR3106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, C. W., and et al. , 2001: Hurricane directional wave spectrum spatial variation in the open ocean. J. Phys. Oceanogr., 31, 24722488, https://doi.org/10.1175/1520-0485(2001)031<2472:HDWSSV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1988a: A parametric hurricane wave prediction model. J. Waterway Port. Coastal and Ocean Eng., 114, 637652.

  • Young, I. R., 1988b: A shallow water spectral wave model. J. Geophys. Res., 93, 51135129, https://doi.org/10.1029/JC093iC05p05113.

  • Young, I. R., 1994: On the measurement of directional wave spectra. Appl. Ocean Res., 16, 283294, https://doi.org/10.1016/0141-1187(94)90017-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1998: Observations of the spectra of hurricane generated waves. Ocean Eng., 25, 261276, https://doi.org/10.1016/S0029-8018(97)00011-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., 2006: Directional spectra of hurricane wind-waves. J. Geophys. Res., 111, C08020, https://doi.org/10.1029/2006JC003540.

  • Young, I. R., 2017: A review of parametric descriptions of tropical cyclone wind-wave generation. Atmosphere, 8, 194, https://doi.org/10.3390/atmos8100194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., and G. P. Burchell, 1986: Hurricane generated waves as observed by satellite. Ocean Eng., 23, 761776, https://doi.org/10.1016/0029-8018(96)00001-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., and G. Ph. van Vledder, 1993: A review of the central role of nonlinear interactions in wind-wave evolution. Phil. Trans. Roy. Soc. London, 342, 505524, https://doi.org/10.1098/rsta.1993.0030.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., and J. Vinoth, 2013: An ‘extended fetch’ model for the spatial distribution of tropical cyclone wind-waves as observed by altimeter. Ocean Eng., 70, 1424, https://doi.org/10.1016/j.oceaneng.2013.05.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and E. W. Uhlhorn, 2012: Hurricane sea surface inflow angle and an observation-based parametric model. Mon. Wea. Rev., 140, 35873605, https://doi.org/10.1175/MWR-D-11-00339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zieger, S., A. V. Babanin, W. E. Rogers, and I. R. Young, 2015: Observation-based source terms in the third-generation wave model WAVEWATCH. Ocean Modell., 96, 225, https://doi.org/10.1016/j.ocemod.2015.07.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 356 356 45
Full Text Views 74 74 8
PDF Downloads 115 115 14

The Physics of Ocean Wave Evolution within Tropical Cyclones

View More View Less
  • 1 a Department of Infrastructure Engineering, University of Melbourne, Melbourne, Victoria, Australia
  • | 2 b NOAA Weather Program Office, Silver Spring, Maryland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A series of numerical experiments with the WAVEWATCH III spectral wave model are used to investigate the physics of wave evolution in tropical cyclones. Buoy observations show that tropical cyclone wave spectra are directionally skewed with a continuum of energy between locally generated wind-sea and remotely generated waves. These systems are often separated by more than 90°. The model spectra are consistent with the observed buoy data and are shown to be governed by nonlinear wave–wave interactions that result in a cascade of energy from the wind-sea to the remotely generated spectral peak. The peak waves act in a “parasitic” manner taking energy from the wind-sea to maintain their growth. The critical role of nonlinear processes explains why one-dimensional tropical cyclone spectra have characteristics very similar to fetch-limited waves, even though the generation system is far more complex. The results also provide strong validation of the critical role nonlinear interactions play in wind-wave evolution.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ian R. Young, ian.young@unimelb.edu.au

Abstract

A series of numerical experiments with the WAVEWATCH III spectral wave model are used to investigate the physics of wave evolution in tropical cyclones. Buoy observations show that tropical cyclone wave spectra are directionally skewed with a continuum of energy between locally generated wind-sea and remotely generated waves. These systems are often separated by more than 90°. The model spectra are consistent with the observed buoy data and are shown to be governed by nonlinear wave–wave interactions that result in a cascade of energy from the wind-sea to the remotely generated spectral peak. The peak waves act in a “parasitic” manner taking energy from the wind-sea to maintain their growth. The critical role of nonlinear processes explains why one-dimensional tropical cyclone spectra have characteristics very similar to fetch-limited waves, even though the generation system is far more complex. The results also provide strong validation of the critical role nonlinear interactions play in wind-wave evolution.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ian R. Young, ian.young@unimelb.edu.au
Save