• Abernathey, R., and P. Cessi, 2014: Topographic enhancement of eddy efficiency in baroclinic equilibration. J. Phys. Oceanogr., 44, 21072126, https://doi.org/10.1175/JPO-D-14-0014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abernathey, R., J. Marshall, and D. Ferreira, 2011: The dependence of Southern Ocean meridional overturning on wind stress. J. Phys. Oceanogr., 41, 22612278, https://doi.org/10.1175/JPO-D-11-023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and V. R. Lamb, 1981: A potential enstrophy and energy conserving scheme for the shallow water equations. Mon. Wea. Rev., 109, 1836, https://doi.org/10.1175/1520-0493(1981)109<0018:APEAEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnol’d, V. I., 1966: An a priori estimate in the theory of hydrodynamic stability. Izv. Vyssh. Uchebn. Zaved. Mat., 54, 35.

  • Bischoff, T., and A. F. Thompson, 2014: Configuration of a Southern Ocean storm track. J. Phys. Oceanogr., 44, 30723078, https://doi.org/10.1175/JPO-D-14-0062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brearley, J. A., R. S. Pickart, H. Valdimarsson, S. Jonsson, R. W. Schmitt, and T. W. N. Haine, 2012: The East Greenland boundary current system south of Denmark Strait. Deep-Sea Res. I, 63, 119, https://doi.org/10.1016/j.dsr.2012.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 1986: Topographic drag due to barotropic flow over the continental shelf and slope. J. Phys. Oceanogr., 16, 21502158, https://doi.org/10.1175/1520-0485(1986)016<2150:TDDTBF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. De Szoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Constantinou, N. C., and W. R. Young, 2017: Beta-plane turbulence above monoscale topography. J. Fluid Mech., 827, 415447, https://doi.org/10.1017/jfm.2017.482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davey, M. K., 1980: A quasi-linear theory for rotating flow over topography. Part 1. Steady β-plane channel. J. Fluid Mech., 99, 267292, https://doi.org/10.1017/S0022112080000614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohue, K. A., K. L. Tracey, D. R. Watts, M. P. Chidichimo, and T. K. Chereskin, 2016: Mean Antarctic Circumpolar Current transport measured in Drake Passage. Geophys. Res. Lett., 43, 11760, https://doi.org/10.1002/2016GL070319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1991: The third-order Adams–Bashforth method: An attractive alternative to leapfrog time differencing. Mon. Wea. Rev., 119, 702720, https://doi.org/10.1175/1520-0493(1991)119<0702:TTOABM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gascard, J.-C., G. Raisbeck, S. Sequeira, F. Yiou, and K. A. Mork, 2004: The Norwegian Atlantic Current in the Lofoten basin inferred from hydrological and tracer data (129I) and its interaction with the Norwegian Coastal Current. Geophys. Res. Lett., 31, L08302, https://doi.org/10.1029/2004GL020006.

    • Search Google Scholar
    • Export Citation
  • Goszczko, I., R. B. Ingvaldsen, and I. H. Onarheim, 2018: Wind-driven cross-shelf exchange—West Spitsbergen current as a source of heat and salt for the adjacent shelf in Arctic winters. J. Geophys. Res. Oceans, 123, 26682696, https://doi.org/10.1002/2017JC013553.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and R. W. Hallberg, 2000: Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon. Wea. Rev., 128, 29352946, https://doi.org/10.1175/1520-0493(2000)128<2935:BFWASL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallberg, R., 2013: Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Modell., 72, 92103, https://doi.org/10.1016/j.ocemod.2013.08.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallberg, R., and A. Gnanadesikan, 2001: An exploration of the role of transient eddies in determining the transport of a zonally reentrant current. J. Phys. Oceanogr., 31, 33123330, https://doi.org/10.1175/1520-0485(2001)031<3312:AEOTRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hattermann, T., 2018: Antarctic thermocline dynamics along a narrow shelf with easterly winds. J. Phys. Oceanogr., 48, 24192443, https://doi.org/10.1175/JPO-D-18-0064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazel, J. E., and A. L. Stewart, 2019: Are the near-Antarctic easterly winds weakening in response to enhancement of the southern annular mode? J. Climate, 32, 18951918, https://doi.org/10.1175/JCLI-D-18-0402.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., 2010: An Antarctic Circumpolar Current driven by surface buoyancy forcing. Geophys. Res. Lett., 37, L23601, https://doi.org/10.1029/2010GL044777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., M. P. Meredith, J. R. Blundell, and C. Wilson, 2008: Eddy heat flux in the Southern Ocean: Response to variable wind forcing. J. Climate, 21, 608620, https://doi.org/10.1175/2007JCLI1925.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., W. K. Dewar, P. Berloff, and M. L. Ward, 2011: Kelvin wave hydraulic control induced by interactions between vortices and topography. J. Fluid Mech., 687, 194208, https://doi.org/10.1017/jfm.2011.344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., M. P. Meredith, D. P. Chambers, E. P. Abrahamsen, C. W. Hughes, and A. K. Morrison, 2015: Recent trends in the Southern Ocean eddy field. J. Geophys. Res. Oceans, 120, 257267, https://doi.org/10.1002/2014JC010470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, G., K. Brink, and D. Haidvogel, 1989: Topographic stress in coastal circulation dynamics. Poleward Flows Along Eastern Ocean Boundaries, S. J. Neshyba et al., Eds., Springer, 315–330.

    • Crossref
    • Export Citation
  • Howard, E., A. McC. Hogg, S. Waterman, and D. P. Marshall, 2015: The injection of zonal momentum by buoyancy forcing in a Southern Ocean model. J. Phys. Oceanogr., 45, 259271, https://doi.org/10.1175/JPO-D-14-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., 1997: Comments on “On the obscurantist physics of ‘form drag’ in theorizing about the circumpolar current.” J. Phys. Oceanogr., 27, 209210, https://doi.org/10.1175/1520-0485(1997)027<0209:COOTOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., 1991: On the nature and significance of the Antarctic Slope Front. Mar. Chem., 35, 924, https://doi.org/10.1016/S0304-4203(09)90005-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., I. M. Held, A. Adcroft, and R. Hallberg, 2015: Energy budget-based backscatter in an eddy permitting primitive equation model. Ocean Modell., 94, 1526, https://doi.org/10.1016/j.ocemod.2015.07.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., and H. L. Bryden, 1989: On the size of the Antarctic Circumpolar Current. Deep-Sea Res., 36A, 3953, https://doi.org/10.1016/0198-0149(89)90017-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langlais, C. E., A. Lenton, R. Matear, D. Monselesan, B. Legresy, E. Cougnon, and S. Rintoul, 2017: Stationary Rossby waves dominate subduction of anthropogenic carbon in the southern ocean. Sci. Rep., 7, 1707, https://doi.org/10.1038/s41598-017-17292-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363404, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, X., X. Zhai, Z. Wang, and D. R. Munday, 2018: Mean, variability, and trend of Southern Ocean wind stress: Role of wind fluctuations. J. Climate, 31, 35573573, https://doi.org/10.1175/JCLI-D-17-0481.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, G., Y. He, H. Shen, and J. Guo, 2011: Global drag-coefficient estimates from scatterometer wind and wave steepness. IEEE Trans. Geosci. Remote Sens., 49, 14991503, https://doi.org/10.1109/TGRS.2010.2082554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manucharyan, G. E., and P. E. Isachsen, 2019: Critical role of continental slopes in halocline and eddy dynamics of the Ekman-driven Beaufort Gyre. J. Geophys. Res. Oceans, 124, 26792696, https://doi.org/10.1029/2018JC014624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, D., 1995: Topographic steering of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 25, 16361650, https://doi.org/10.1175/1520-0485(1995)025<1636:TSOTAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, D. P., 2016: A theoretical model of long Rossby waves in the Southern Ocean and their interaction with bottom topography. Fluids, 1, 17, https://doi.org/10.3390/fluids1020017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, D. P., M. H. P. Ambaum, J. R. Maddison, D. R. Munday, and L. Novak, 2017: Eddy saturation and frictional control of the Antarctic Circumpolar Current. Geophys. Res. Lett., 44, 286292, https://doi.org/10.1002/2016GL071702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2003: Trends in the Southern Annular Mode from observations and reanalyses. J. Climate, 16, 41344143, https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354, https://doi.org/10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180, https://doi.org/10.1038/ngeo1391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997a: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997b: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res. Oceans, 102, 57335752, https://doi.org/10.1029/96JC02776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masich, J., T. K. Chereskin, and M. R. Mazloff, 2015: Topographic form stress in the Southern Ocean state estimate. J. Geophys. Res. Oceans, 120, 79197933, https://doi.org/10.1002/2015JC011143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masich, J., M. R. Mazloff, and T. K. Chereskin, 2018: Interfacial form stress in the Southern Ocean state estimate. J. Geophys. Res. Oceans, 123, 33683385, https://doi.org/10.1029/2018JC013844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazloff, M. R., P. Heimbach, and C. Wunsch, 2010: An eddy-permitting Southern Ocean state estimate. J. Phys. Oceanogr., 40, 880899, https://doi.org/10.1175/2009JPO4236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meneghello, G., J. Marshall, J.-M. Campin, E. Doddridge, and M.-L. Timmermans, 2018: The ice-ocean governor: Ice-ocean stress feedback limits Beaufort Gyre spin-up. Geophys. Res. Lett., 45, 11293, https://doi.org/10.1029/2018GL080171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., 2016: Understanding the structure of changes in the Southern Ocean eddy field. Geophys. Res. Lett., 43, 58295832, https://doi.org/10.1002/2016GL069677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., and A. M. Hogg, 2013: On the relationship between Southern Ocean overturning and ACC transport. J. Phys. Oceanogr., 43, 140148, https://doi.org/10.1175/JPO-D-12-057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munday, D. R., H. L. Johnson, and D. P. Marshall, 2013: Eddy saturation of equilibrated circumpolar currents. J. Phys. Oceanogr., 43, 507532, https://doi.org/10.1175/JPO-D-12-095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., and E. Palmén, 1951: Note on the dynamics of the Antarctic Circumpolar Current. Tellus, 3, 5355, https://doi.org/10.3402/tellusa.v3i1.8609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myers, P. G., C. Donnelly, and M. H. Ribergaard, 2009: Structure and variability of the West Greenland Current in summer derived from 6 repeat standard sections. Prog. Oceanogr., 80, 93112, https://doi.org/10.1016/j.pocean.2008.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nadeau, L.-P., and R. Ferrari, 2015: The role of closed gyres in setting the zonal transport of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 45, 14911509, https://doi.org/10.1175/JPO-D-14-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., A. J. G. Nurser, R. B. Scott, and J. A. Goff, 2013: The impact of small-scale topography on the dynamical balance of the ocean. J. Phys. Oceanogr., 43, 647668, https://doi.org/10.1175/JPO-D-12-056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olbers, D., 1998: Comments on “On the obscurantist physics of ‘form drag’ in theorizing about the Circumpolar Current.” J. Phys. Oceanogr., 28, 16471654, https://doi.org/10.1175/1520-0485(1998)028<1647:COOTOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olbers, D., D. Borowski, C. Völker, and J.-O. Wolff, 2004: The dynamical balance, transport and circulation of the Antarctic Circumpolar Current. Antarct. Sci., 16, 439470, https://doi.org/10.1017/S0954102004002251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patmore, R. D., P. R. Holland, D. R. Munday, A. C. Naveira Garabato, D. P. Stevens, and M. P. Meredith, 2019: Topographic control of Southern Ocean gyres and the Antarctic Circumpolar Current: A barotropic perspective. J. Phys. Oceanogr., 49, 32213244, https://doi.org/10.1175/JPO-D-19-0083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. Springer, 710 pp.

    • Crossref
    • Export Citation
  • Pinardi, N., A. Rosati, and R. Pacanowski, 1995: The sea surface pressure formulation of rigid lid models. Implications for altimetric data assimilation studies. J. Mar. Syst., 6, 109119, https://doi.org/10.1016/0924-7963(94)00011-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pringle, J. M., 2002: Enhancement of wind-driven upwelling and downwelling by alongshore bathymetric variability. J. Phys. Oceanogr., 32, 31013112, https://doi.org/10.1175/1520-0485(2002)032<3101:EOWDUA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, R., L. Padman, and G. D. Egbert, 1998: Tides in the Weddell Sea. Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin, S. Jacobs and R. Weiss, Eds., Antarctic Research Series, Vol. 75, Amer. Geophys. Union, 341–369.

    • Crossref
    • Export Citation
  • Schulze Chretien, L. M., and E. Frajka-Williams, 2018: Wind-driven transport of fresh shelf water into the upper 30 m of the Labrador Sea. Ocean Sci., 14, 12471264, https://doi.org/10.5194/os-14-1247-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Wea. Rev., 91, 99164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solodoch, A., A. L. Stewart, and J. C. McWilliams, 2021: Formation of anticyclones above topographic depressions. J. Phys. Oceanogr., 51, 207228, https://doi.org/10.1175/JPO-D-20-0150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2004: Boundary currents and watermass transformation in marginal seas. J. Phys. Oceanogr., 34, 11971213, https://doi.org/10.1175/1520-0485(2004)034<1197:BCAWTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., and L. N. Thomas, 2016: Downfront winds over buoyant coastal plumes. J. Phys. Oceanogr., 46, 31393154, https://doi.org/10.1175/JPO-D-16-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stanley, G. J., T. E. Dowling, M. E. Bradley, and D. P. Marshall, 2020: Ertel potential vorticity versus Bernoulli potential on approximately neutral surfaces in the Antarctic circumpolar current. J. Phys. Oceanogr., 50, 26212648, https://doi.org/10.1175/JPO-D-19-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, D. P., and V. O. Ivchenko, 1997: The zonal momentum balance in an eddy-resolving general-circulation model of the Southern Ocean. Quart. J. Roy. Meteor. Soc., 123, 929951, https://doi.org/10.1002/qj.49712354008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., 2019: Approximating isoneutral ocean transport via the Temporal Residual Mean. Fluids, 4, 179, https://doi.org/10.3390/fluids4040179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and A. F. Thompson, 2012: Sensitivity of the ocean’s deep overturning circulation to easterly Antarctic winds. Geophys. Res. Lett., 39, L18604, https://doi.org/10.1029/2012GL053099.

    • Crossref
    • Export Citation
  • Stewart, A. L., and A. F. Thompson, 2013: Connecting Antarctic cross-slope exchange with Southern Ocean overturning. J. Phys. Oceanogr., 43, 14531471, https://doi.org/10.1175/JPO-D-12-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and A. F. Thompson, 2015a: Eddy-mediated transport of warm Circumpolar Deep Water across the Antarctic Shelf Break. Geophys. Res. Lett., 42, 432440, https://doi.org/10.1002/2014GL062281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and A. F. Thompson, 2015b: The Neutral Density Temporal Residual Mean overturning circulation. Ocean Modell., 90, 4456, https://doi.org/10.1016/j.ocemod.2015.03.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and P. J. Dellar, 2016: An energy and potential enstrophy conserving numerical scheme for the multi-layer shallow water equations with complete Coriolis force. J. Comput. Phys., 313, 99120, https://doi.org/10.1016/j.jcp.2015.12.042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and A. F. Thompson, 2016: Eddy generation and jet formation via dense water outflows across the Antarctic continental slope. J. Phys. Oceanogr., 46, 37293750, https://doi.org/10.1175/JPO-D-16-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and A. M. Hogg, 2017: Reshaping the Antarctic Circumpolar Current via Antarctic bottom water export. J. Phys. Oceanogr., 47, 25772601, https://doi.org/10.1175/JPO-D-17-0007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., A. Klocker, and D. Menemenlis, 2018: Circum-Antarctic shoreward heat transport derived from an eddy- and tide-resolving simulation. Geophys. Res. Lett., 45, 834845, https://doi.org/10.1002/2017GL075677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., A. Klocker, and D. Menemenlis, 2019: Acceleration and overturning of the Antarctic Slope Current by winds, eddies, and tides. J. Phys. Oceanogr., 49, 20432074, https://doi.org/10.1175/JPO-D-18-0221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straub, D. N., 1993: On the transport and angular momentum balance of channel models of the Antarctic circumpolar current. J. Phys. Oceanogr., 23, 776782, https://doi.org/10.1175/1520-0485(1993)023<0776:OTTAAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2013: Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography, 26, 8097, https://doi.org/10.5670/oceanog.2013.07.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., 2008: The atmospheric ocean: Eddies and jets in the Antarctic Circumpolar Current. Philos. Trans. Roy. Soc., 366A, 45294541, https://doi.org/10.1098/rsta.2008.0196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and A. C. Naveira Garabato, 2014: Equilibration of the Antarctic Circumpolar Current by standing meanders. J. Phys. Oceanogr., 44, 18111828, https://doi.org/10.1175/JPO-D-13-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., A. L. Stewart, and T. Bischoff, 2016: A multibasin residual-mean model for the global overturning circulation. J. Phys. Oceanogr., 46, 25832604, https://doi.org/10.1175/JPO-D-15-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., A. L. Stewart, P. Spence, and K. J. Heywood, 2018: The Antarctic slope front in a changing climate. Rev. Geophys., 56, 741770, https://doi.org/10.1029/2018RG000624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Towns, J., and Coauthors, 2014: XSEDE: Accelerating scientific discovery. Comput. Sci. Eng., 16, 6274, https://doi.org/10.1109/MCSE.2014.80.

  • Tréguier, A.-M., and J. C. McWilliams, 1990: Topographic influences on wind-driven, stratified flow in a β-plane channel: An idealized model for the Antarctic Circumpolar Current. J. Phys. Oceanogr., 20, 321343, https://doi.org/10.1175/1520-0485(1990)020<0321:TIOWDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 745 pp.

    • Crossref
    • Export Citation
  • Vallis, G. K., and M. E. Maltrud, 1993: Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr., 23, 13461362, https://doi.org/10.1175/1520-0485(1993)023<1346:GOMFAJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and A. L. Stewart, 2018: Eddy dynamics over continental slopes under retrograde winds: Insights from a model inter-comparison. Ocean Modell., 121, 118, https://doi.org/10.1016/j.ocemod.2017.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and A. L. Stewart, 2020: Scalings for eddy buoyancy transfer across continental slopes under retrograde winds. Ocean Modell., 147, 101579, https://doi.org/10.1016/j.ocemod.2020.101579.

    • Crossref
    • Export Citation
  • Ward, M. L., and A. M. Hogg, 2011: Establishment of momentum balance by form stress in a wind-driven channel. Ocean Modell., 40, 133146, https://doi.org/10.1016/j.ocemod.2011.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, B. A., J. H. LaCasce, and P. E. Robbins, 1996: On the obscurantist physics of “form drag” in theorizing about the Circumpolar Current. J. Phys. Oceanogr., 26, 22972301, https://doi.org/10.1175/1520-0485(1996)026<2297:OTOPOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., M. Nikurashin, A. M. Hogg, and B. M. Sloyan, 2018: Energy loss from transient eddies due to lee wave generation in the Southern Ocean. J. Phys. Oceanogr., 48, 28672885, https://doi.org/10.1175/JPO-D-18-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Youngs, M. K., A. F. Thompson, A. Lazar, and K. J. Richards, 2017: ACC meanders, energy transfer, and mixed barotropic–baroclinic instability. J. Phys. Oceanogr., 47, 12911305, https://doi.org/10.1175/JPO-D-16-0160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, K. X., A. L. Stewart, and J. C. McWilliams, 2019: Sill-influenced exchange flows in ice shelf cavities. J. Phys. Oceanogr., 49, 163191, https://doi.org/10.1175/JPO-D-18-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 217 217 48
Full Text Views 71 71 18
PDF Downloads 93 93 23

Does Topographic Form Stress Impede Prograde Ocean Currents?

View More View Less
  • 1 a Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
  • | 2 b Department of Ocean Science and Center for Ocean Research in Hong Kong and Macau, Hong Kong University of Science and Technology, Hong Kong, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Topographic form stress (TFS) plays a central role in constraining the transport of the Antarctic Circumpolar Current (ACC), and thus the rate of exchange between the major ocean basins. Topographic form stress generation in the ACC has been linked to the formation of standing Rossby waves, which occur because the current is retrograde (opposing the direction of Rossby wave propagation). However, it is unclear whether TFS similarly retards current systems that are prograde (in the direction of Rossby wave propagation), which cannot arrest Rossby waves. An isopycnal model is used to investigate the momentum balance of wind-driven prograde and retrograde flows in a zonal channel, with bathymetry consisting of either a single ridge or a continental shelf and slope with a meridional excursion. Consistent with previous studies, retrograde flows are almost entirely impeded by TFS, except in the limit of flat bathymetry, whereas prograde flows are typically impeded by a combination of TFS and bottom friction. A barotropic theory for standing waves shows that bottom friction serves to shift the phase of the standing wave’s pressure field from that of the bathymetry, which is necessary to produce TFS. The mechanism is the same in prograde and retrograde flows, but is most efficient when the mean flow arrests a Rossby wave with a wavelength comparable to that of the bathymetry. The asymmetry between prograde and retrograde momentum balances implies that prograde current systems may be more sensitive to changes in wind forcing, for example associated with climate shifts.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yue Bai, baiyue@ucla.edu

This article is included in the Oceanic flow-topography interactions Special Collection.

Abstract

Topographic form stress (TFS) plays a central role in constraining the transport of the Antarctic Circumpolar Current (ACC), and thus the rate of exchange between the major ocean basins. Topographic form stress generation in the ACC has been linked to the formation of standing Rossby waves, which occur because the current is retrograde (opposing the direction of Rossby wave propagation). However, it is unclear whether TFS similarly retards current systems that are prograde (in the direction of Rossby wave propagation), which cannot arrest Rossby waves. An isopycnal model is used to investigate the momentum balance of wind-driven prograde and retrograde flows in a zonal channel, with bathymetry consisting of either a single ridge or a continental shelf and slope with a meridional excursion. Consistent with previous studies, retrograde flows are almost entirely impeded by TFS, except in the limit of flat bathymetry, whereas prograde flows are typically impeded by a combination of TFS and bottom friction. A barotropic theory for standing waves shows that bottom friction serves to shift the phase of the standing wave’s pressure field from that of the bathymetry, which is necessary to produce TFS. The mechanism is the same in prograde and retrograde flows, but is most efficient when the mean flow arrests a Rossby wave with a wavelength comparable to that of the bathymetry. The asymmetry between prograde and retrograde momentum balances implies that prograde current systems may be more sensitive to changes in wind forcing, for example associated with climate shifts.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yue Bai, baiyue@ucla.edu

This article is included in the Oceanic flow-topography interactions Special Collection.

Save