• Alford, M. H., H. L. Simmons, O. B. Marques, and J. B. Girton, 2019: Internal tide attenuation in the North Pacific. Geophys. Res. Lett., 46, 82058213, https://doi.org/10.1029/2019GL082648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baines, P. G., 1982: On internal tide generation models. Deep-Sea Res., 29, 307338, https://doi.org/10.1016/0198-0149(82)90098-X.

  • Baines, P. G., 1997: Topographic Effects in Stratified Flows. Cambridge University Press, 500 pp.

  • Bell, T., 1975: Topographically generated internal waves in the open ocean. J. Geophys. Res., 80, 320327, https://doi.org/10.1029/JC080i003p00320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., 1985: The energy flux from the wind to near-inertial motions in the surface mixed layer. J. Phys. Oceanogr., 15, 10431059, https://doi.org/10.1175/1520-0485(1985)015<1043:TEFFTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. Ray, 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775778, https://doi.org/10.1038/35015531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goff, J. A., 2010: Global prediction of abyssal hill root-mean-square heights from small-scale altimetric gravity variability. J. Geophys. Res., 115, B12104, https://doi.org/10.1029/2010JB007867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khatiwala, S., 2003: Generation of internal tides in an ocean of finite depth: Analytical and numerical calculations. Deep-Sea Res. I, 50, 321, https://doi.org/10.1016/S0967-0637(02)00132-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Llewellyn Smith, S. G., and W. Young, 2002: Conversion of the barotropic tide. J. Phys. Oceanogr., 32, 15541566, https://doi.org/10.1175/1520-0485(2002)032<1554:COTBT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohri, K., T. Hibiya, and N. Iwamae, 2010: Revisiting internal wave generation by tide-topography interaction. J. Geophys. Res., 115, C11001, https://doi.org/10.1029/2009JC005908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., A. G. Nurser, R. B. Scott, and J. A. Goff, 2013: The impact of small-scale topography on the dynamical balance of the ocean. J. Phys. Oceanogr., 43, 647668, https://doi.org/10.1175/JPO-D-12-056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2010: Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Application to the Southern Ocean. J. Phys. Oceanogr., 40, 20252042, https://doi.org/10.1175/2010JPO4315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K., 2004: Idealized solutions for the energy balance of the finescale internal wave field. J. Phys. Oceanogr., 34, 231246, https://doi.org/10.1175/1520-0485(2004)034<0231:ISFTEB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and G. T. Mitchum, 1997: Surface manifestation of internal tides in the deep ocean: Observations from altimetry and island gauges. Prog. Oceanogr., 40, 135162, https://doi.org/10.1016/S0079-6611(97)00025-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R., J. Goff, A. Naveira Garabato, and A. Nurser, 2011: Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography. J. Geophys. Res., 116, C09029, https://doi.org/10.1029/2011JC007005.

    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., 2020: Interdependence of internal tide and lee wave generation at abyssal hills: Global calculations. J. Phys. Oceanogr., 50, 655677, https://doi.org/10.1175/JPO-D-19-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., and A. M. Hogg, 2017: The viscous lee wave problem and its implications for ocean modelling. Ocean Modell., 113, 2229, https://doi.org/10.1016/j.ocemod.2017.03.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sjöberg, B., and A. Stigebrandt, 1992: Computations of the geographical distribution of the energy flux to mixing processes via internal tides and the associated vertical circulation in the ocean. Deep-Sea Res., 39, 269291, https://doi.org/10.1016/0198-0149(92)90109-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St Laurent, L., and C. Garrett, 2002: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32, 28822899, https://doi.org/10.1175/1520-0485(2002)032<2882:TROITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St Laurent, L., and J. D. Nash, 2004: On the fraction of internal tide energy dissipated near topography. Near-Boundary Processes and Their Parameterization: Proc. ’Aha Huliko’a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 4558.

  • Trossman, D. S., B. K. Arbic, J. G. Richman, S. T. Garner, S. R. Jayne, and A. J. Wallcraft, 2016: Impact of topographic internal lee wave drag on an eddying global ocean model. Ocean Modell., 97, 109128, https://doi.org/10.1016/j.ocemod.2015.10.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and et al. , 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, https://doi.org/10.1175/JPO-D-13-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterman, S., A. C. Naveira Garabato, and K. L. Polzin, 2013: Internal waves and turbulence in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 43, 259282, https://doi.org/10.1175/JPO-D-11-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, J. B. Girton, L. Rainville, and H. L. Simmons, 2016: Global observations of open-ocean mode-1 M2 internal tides. J. Phys. Oceanogr., 46, 16571684, https://doi.org/10.1175/JPO-D-15-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, K., and M. Nikurashin, 2019: Downstream propagation and remote dissipation of internal waves in the Southern Ocean. J. Phys. Oceanogr., 49, 18731887, https://doi.org/10.1175/JPO-D-18-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 189 192 41
Full Text Views 56 56 13
PDF Downloads 77 77 22

Dissipating and Reflecting Internal Waves

View More View Less
  • 1 a Research School of Earth Sciences, and ARC Centre of Excellence in Climate Extremes, Australian National University, Canberra, Australia
  • | 2 b Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Internal waves generated at the seafloor propagate through the interior of the ocean, driving mixing where they break and dissipate. However, existing theories only describe these waves in two limiting cases. In one limit, the presence of an upper boundary permits bottom-generated waves to reflect from the ocean surface back to the seafloor, and all the energy flux is at discrete wavenumbers corresponding to resonant modes. In the other limit, waves are strongly dissipated such that they do not interact with the upper boundary and the energy flux is continuous over wavenumber. Here, a novel linear theory is developed for internal tides and lee waves that spans the parameter space in between these two limits. The linear theory is compared with a set of numerical simulations of internal tide and lee wave generation at realistic abyssal hill topography. The linear theory is able to replicate the spatially averaged kinetic energy and dissipation of even highly nonlinear wave fields in the numerical simulations via an appropriate choice of the linear dissipation operator, which represents turbulent wave breaking processes.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Callum J. Shakespeare, callum.shakespeare@anu.edu.au

Abstract

Internal waves generated at the seafloor propagate through the interior of the ocean, driving mixing where they break and dissipate. However, existing theories only describe these waves in two limiting cases. In one limit, the presence of an upper boundary permits bottom-generated waves to reflect from the ocean surface back to the seafloor, and all the energy flux is at discrete wavenumbers corresponding to resonant modes. In the other limit, waves are strongly dissipated such that they do not interact with the upper boundary and the energy flux is continuous over wavenumber. Here, a novel linear theory is developed for internal tides and lee waves that spans the parameter space in between these two limits. The linear theory is compared with a set of numerical simulations of internal tide and lee wave generation at realistic abyssal hill topography. The linear theory is able to replicate the spatially averaged kinetic energy and dissipation of even highly nonlinear wave fields in the numerical simulations via an appropriate choice of the linear dissipation operator, which represents turbulent wave breaking processes.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Callum J. Shakespeare, callum.shakespeare@anu.edu.au
Save