• Aghsaee, P., L. Boegman, and K. G. Lamb, 2010: Breaking of shoaling internal solitary waves. J. Fluid Mech., 659, 289317, https://doi.org/10.1017/S002211201000248X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. M., J. A. Simeonov, J. Calantoni, M. T. Stacey, and E. A. Variano, 2018: Turbulence in the presence of internal waves in the bottom boundary layer of the california inner shelf. Ocean Dyn., 68, 627644, https://doi.org/10.1007/s10236-018-1147-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Apel, J. R., 2003: A new analytical model for internal solitons in the ocean. J. Phys. Oceanogr., 33, 22472269, https://doi.org/10.1175/1520-0485(2003)033<2247:ANAMFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arthur, R. S., and O. B. Fringer, 2014: The dynamics of breaking internal solitary waves on slopes. J. Fluid Mech., 761, 360398, https://doi.org/10.1017/jfm.2014.641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battjes, J., 1988: Surf-zone dynamics. Annu. Rev. Fluid Mech., 20, 257291, https://doi.org/10.1146/annurev.fl.20.010188.001353.

  • Becherer, J., and J. N. Moum, 2017: An efficient scheme for onboard reduction of moored χpod data. J. Atmos. Oceanic Technol., 34, 25332546, https://doi.org/10.1175/JTECH-D-17-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becherer, J., J. N. Moum, J. A. Colosi, J. A. Lerczak, and J. M. McSweeney, 2020: Turbulence asymmetries in bottom boundary layer velocity pulses associated with onshore-propagating nonlinear internal waves. J. Phys. Oceanogr., 50, 23732391, https://doi.org/10.1175/JPO-D-19-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becherer, J., and et al. , 2021: Saturation of the internal tide over the inner continental shelf. Part II: Parameterization. J. Phys. Oceanogr., 51, 25652582, https://doi.org/10.1175/JPO-D-21-0047.1.

    • Search Google Scholar
    • Export Citation
  • Boegman, L., and G. N. Ivey, 2009: Flow separation and resuspension beneath shoaling nonlinear internal waves. J. Geophys. Res., 114, C02018, https://doi.org/10.1029/2007JC004411.

    • Search Google Scholar
    • Export Citation
  • Boegman, L., and M. Stastna, 2019: Sediment resuspension and transport by internal solitary waves. Annu. Rev. Fluid Mech., 51, 129154, https://doi.org/10.1146/annurev-fluid-122316-045049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bogucki, D. J., and C. Garrett, 1993: A simple model for the shear-induced decay of an internal solitary wave. J. Phys. Oceanogr., 23, 17671776, https://doi.org/10.1175/1520-0485(1993)023<1767:ASMFTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bogucki, D. J., and L. G. Redekopp, 1999: A mechanism for sediment resuspension by internal solitary waves. Geophys. Res. Lett., 26, 13171320, https://doi.org/10.1029/1999GL900234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butman, B., P. Alexander, A. Scotti, R. Beardsley, and S. Anderson, 2006: Large internal waves in Massachusetts Bay transport sediments offshore. Cont. Shelf Res., 26, 20292049, https://doi.org/10.1016/j.csr.2006.07.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Celona, S., S. T. Merrifield, T. de Paolo, N. Kaslan, T. Cook, J. A. Colosi, and E. J. Terrill, 2021: Automated detection, classification, and tracking of internal wave signatures using X-band radar in the inner shelf. J. Atmos. Oceanic Technol., 38, 789803, https://doi.org/10.1175/JTECH-D-20-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colosi, J. A., N. Kumar, S. H. Suanda, T. M. Freismuth, and J. H. MacMahan, 2018: Statistics of internal tide bores and internal solitary waves observed on the inner continental shelf off Point Sal, California. J. Phys. Oceanogr., 48, 123143, https://doi.org/10.1175/JPO-D-17-0045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diamessis, P. J., and L. G. Redekopp, 2006: Numerical investigation of solitary internal wave-induced global instability in shallow water benthic boundary layers. J. Phys. Oceanogr., 36, 784812, https://doi.org/10.1175/JPO2900.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duda, T. F., and L. Rainville, 2008: Diurnal and semidiurnal internal tide energy flux at a continental slope in the South China Sea. J. Geophys. Res., 113, C03025, https://doi.org/10.1029/2007JC004418.

    • Search Google Scholar
    • Export Citation
  • Fairall, C., E. Bradley, J. Hare, A. Grachev, and J. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feddersen, F., J. H. MacMahan, T. M. Freismuth, M. K. Gough, and M. Kovatch, 2020: Inner shelf vertical and alongshore temperature variability in the subtidal, diurnal, and semidiurnal bands along the central California coastline with headlands. J. Geophys. Res. Oceans, 125, e2019JC015347, https://doi.org/10.1029/2019JC015347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fewings, M., S. J. Lentz, and J. Fredericks, 2008: Observations of cross-shelf flow driven by cross-shelf winds on the inner continental shelf. J. Phys. Oceanogr., 38, 23582378, https://doi.org/10.1175/2008JPO3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gough, M. K., T. M. Freismuth, J. H. MacMahan, J. A. Colosi, S. H. Suanda, and N. Kumar, 2020: Heating of the midshelf and inner shelf by warm internal tidal bores. J. Phys. Oceanogr., 50, 26092620, https://doi.org/10.1175/JPO-D-19-0143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimshaw, R., E. Pelinovsky, T. Talipova, and A. Kurkin, 2004: Simulation of the transformation of internal solitary waves on oceanic shelves. J. Phys. Oceanogr., 34, 27742791, https://doi.org/10.1175/JPO2652.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haller, M., D. Honegger, R. Pittman, A. O’Dea, and A. Simpson, 2019: Real-time marine radar observations of nearshore waves and flow structures from shore-based towers. IEEE/OES Twelfth Current, Waves and Turbulence Measurement (CWTM), San Diego, CA, IEEE, 1–7, https://doi.org/10.1109/CWTM43797.2019.8955152.

    • Crossref
    • Export Citation
  • Helfrich, K. R., and W. K. Melville, 2006: Long nonlinear internal waves. Annu. Rev. Fluid Mech., 38, 395425, https://doi.org/10.1146/annurev.fluid.38.050304.092129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henyey, F. S., and A. Hoering, 1997: Energetics of borelike internal waves. J. Geophys. Res., 102, 33233330, https://doi.org/10.1029/96JC03558.

  • Hinze, J., 1975: Turbulence. 2nd ed. McGraw-Hill, Inc., 790 pp.

  • Holloway, P. E., E. Pelinovsky, and T. Talipova, 1999: A generalized Korteweg-de Vries model of internal tide transformation in the coastal zone. J. Geophys. Res., 104, 18 33318 350, https://doi.org/10.1029/1999JC900144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, P. E., P. G. Chatwin, and P. Craig, 2001: Internal tide observations from the Australian north west shelf in summer 1995. J. Phys. Oceanogr., 31, 11821199, https://doi.org/10.1175/1520-0485(2001)031<1182:ITOFTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inall, M. E., T. P. Rippeth, and T. J. Sherwin, 2000: Impact of nonlinear waves on the dissipation of internal tidal energy at a shelf break. J. Geophys. Res., 105, 86878705, https://doi.org/10.1029/1999JC900299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, D., and O. Fringer, 2010: On the calculation of available potential energy in internal wave fields. J. Phys. Oceanogr., 40, 25392545, https://doi.org/10.1175/2010JPO4497.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, D., and O. Fringer, 2012: Energetics of barotropic and baroclinic tides in the Monterey Bay area. J. Phys. Oceanogr., 42, 272290, https://doi.org/10.1175/JPO-D-11-039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, N., S. Suanda, J. Colosi, K. Haas, E. DiLorenzo, A. Miller, and C. Edwards, 2019: Coastal semidiurnal internal tidal incoherence in the Santa Maria Basin, California: Observations and model simulations. J. Geophys. Res. Oceans, 124, 51585179, https://doi.org/10.1029/2018JC014891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, N., and et al. , 2021: The Inner-Shelf Dynamics Experiment. Bull. Amer. Meteor. Soc., 102, E1033E1063, https://doi.org/10.1175/BAMS-D-19-0281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamb, K. G., 2014: Internal wave breaking and dissipation mechanisms on the continental slope/shelf. Annu. Rev. Fluid Mech., 46, 231254, https://doi.org/10.1146/annurev-fluid-011212-140701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamb, K. G., and D. Farmer, 2011: Instabilities in an internal solitary-like wave on the Oregon shelf. J. Phys. Oceanogr., 41, 6787, https://doi.org/10.1175/2010JPO4308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenain, L., N. M. Statom, and W. K. Melville, 2019: Airborne measurements of surface wind and slope statistics over the ocean. J. Phys. Oceanogr., 49, 27992814, https://doi.org/10.1175/JPO-D-19-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., 1994: Current dynamics over the Northern California inner shelf. J. Phys. Oceanogr., 24, 24612478, https://doi.org/10.1175/1520-0485(1994)024<2461:CDOTNC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lerczak, J., and et al. , 2019: Untangling a web of interactions where surf meets coastal ocean. Eos, Trans. Amer. Geophys. Union, 100, https://doi.org/10.1029/2019EO122141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McSweeney, J. M., and et al. , 2020a: Alongshore variability of shoaling internal bores on the inner shelf. J. Phys. Oceanogr., 50, 29652981, https://doi.org/10.1175/JPO-D-20-0090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McSweeney, J. M., and et al. , 2020b: Observations of shoaling nonlinear internal bores across the central California inner shelf. J. Phys. Oceanogr., 50, 111132, https://doi.org/10.1175/JPO-D-19-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., 2015: Ocean speed and turbulence measurements using pitot-static tubes on moorings. J. Atmos. Oceanic Technol., 32, 14001413, https://doi.org/10.1175/JTECH-D-14-00158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., and J. Nash, 2009: Mixing measurements on an equatorial ocean mooring. J. Atmos. Oceanic Technol., 26, 317336, https://doi.org/10.1175/2008JTECHO617.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J., D. Farmer, W. Smyth, L. Armi, and S. Vagle, 2003: Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf. J. Phys. Oceanogr., 33, 20932112, https://doi.org/10.1175/1520-0485(2003)033<2093:SAGOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., D. Farmer, E. Shroyer, W. Smyth, and L. Armi, 2007a: Dissipative losses in nonlinear internal waves propagating across the continental shelf. J. Phys. Oceanogr., 37, 19891995, https://doi.org/10.1175/JPO3091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., J. Klymak, J. Nash, A. Perlin, and W. Smyth, 2007b: Energy transport by nonlinear internal waves. J. Phys. Oceanogr., 37, 19681988, https://doi.org/10.1175/JPO3094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. D., M. H. Alford, and E. Kunze, 2005: Estimating internal wave energy fluxes in the ocean. J. Atmos. Oceanic Technol., 22, 15511570, https://doi.org/10.1175/JTECH1784.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. D., S. M. Kelly, E. L. Shroyer, J. N. Moum, and T. F. Duda, 2012: The unpredictable nature of internal tides on continental shelves. J. Phys. Oceanogr., 42, 19812000, https://doi.org/10.1175/JPO-D-12-028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perlin, A., J. N. Moum, J. Klymak, M. D. Levine, T. Boyd, and P. M. Kosro, 2005: A modified law-of-the-wall applied to oceanic bottom boundary layers. J. Geophys. Res., 110, C10S10, https://doi.org/10.1029/2004JC002310.

    • Search Google Scholar
    • Export Citation
  • Pomar, L., M. Morsilli, P. Hallock, and B. Bádenas, 2012: Internal waves, an under-explored source of turbulence events in the sedimentary record. Earth-Sci. Rev., 111, 5681, https://doi.org/10.1016/j.earscirev.2011.12.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rippeth, T. P., and M. E. Inall, 2002: Observations of the internal tide and associated mixing across the Malin Shelf. J. Geophys. Res., 107, 3028, https://doi.org/10.1029/2000JC000761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandstrom, H., and J. Elliott, 1984: Internal tide and solitons on the Scotian Shelf: A nutrient pump at work. J. Geophys. Res., 89, 64156426, https://doi.org/10.1029/JC089iC04p06415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandstrom, H., and N. Oakey, 1995: Dissipation in internal tides and solitary waves. J. Phys. Oceanogr., 25, 604614, https://doi.org/10.1175/1520-0485(1995)025<0604:DIITAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scotti, A., and J. Pineda, 2007: Plankton accumulation and transport in propagating nonlinear internal fronts. J. Mar. Res., 65, 117145, https://doi.org/10.1357/002224007780388702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scotti, A., R. C. Beardsley, B. Butman, and J. Pineda, 2008: Shoaling of nonlinear internal waves in Massachusetts Bay. J. Geophys. Res., 113, C08031, https://doi.org/10.1029/2008JC004726.

    • Search Google Scholar
    • Export Citation
  • Sharples, J., and et al. , 2007: Spring-neap modulation of internal tide mixing and vertical nitrate fluxes at a shelf edge in summer. Limnol. Oceanogr., 52, 17351747, https://doi.org/10.4319/lo.2007.52.5.1735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharples, J., and J. R. Zeldis, 2019: Variability of internal tide energy, mixing and nitrate fluxes in response to changes in stratification on the northeast New Zealand continental shelf. N. Z. J. Mar. Freshwater Res., 55, 94111, https://doi.org/10.1080/00288330.2019.1705357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharples, J., C. M. Moore, and E. R. Abraham, 2001: Internal tide dissipation, mixing, and vertical nitrate flux at the shelf edge of NE New Zealand. J. Geophys. Res., 106, 14 06914 081, https://doi.org/10.1029/2000JC000604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwin, T., 1988: Analysis of an internal tide observed on the Malin Shelf, north of Ireland. J. Phys. Oceanogr., 18, 10351050, https://doi.org/10.1175/1520-0485(1988)018<1035:AOAITO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shroyer, E., J. Moum, and J. Nash, 2010a: Energy transformations and dissipation of nonlinear internal waves over New Jersey’s continental shelf. Nonlinear Processes Geophys., 17, 345360, https://doi.org/10.5194/npg-17-345-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shroyer, E. L., J. N. Moum, and J. D. Nash, 2010b: Vertical heat flux and lateral mass transport in nonlinear internal waves. Geophys. Res. Lett., 37, L08601, https://doi.org/10.1029/2010GL042715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shroyer, E. L., J. N. Moum, and J. D. Nash, 2011: Nonlinear internal waves over New Jersey’s continental shelf. J. Geophys. Res., 116, C03022, https://doi.org/10.1029/2010JC006332.

    • Search Google Scholar
    • Export Citation
  • Spydell, M. S., F. Feddersen, and J. Macmahan, 2019: The effect of drifter GPS errors on estimates of submesoscale vorticity. J. Atmos. Oceanic Technol., 36, 21012119, https://doi.org/10.1175/JTECH-D-19-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stastna, M., and K. G. Lamb, 2002: Large fully nonlinear internal solitary waves: The effect of background current. Phys. Fluids, 14, 29872999, https://doi.org/10.1063/1.1496510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suanda, S. H., and et al. , 2016: Wind relaxation and a coastal buoyant plume north of Pt. Conception, CA: Observations, simulations, and scalings. J. Geophys. Res. Oceans, 121, 74557475, https://doi.org/10.1002/2016JC011919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suanda, S. H., F. Feddersen, and N. Kumar, 2017: The effect of barotropic and baroclinic tides on coastal stratification and mixing. J. Geophys. Res. Oceans, 122, 10156, https://doi.org/10.1002/2017JC013379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornton, E. B., and R. Guza, 1983: Transformation of wave height distribution. J. Geophys. Res., 88, 59255938, https://doi.org/10.1029/JC088iC10p05925.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venayagamoorthy, S. K., and O. B. Fringer, 2007: On the formation and propagation of nonlinear internal boluses across a shelf break. J. Fluid Mech., 577, 137159, https://doi.org/10.1017/S0022112007004624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vlasenko, V., and K. Hutter, 2002: Numerical experiments on the breaking of solitary internal wavesover a slope–shelf topography. J. Phys. Oceanogr., 32, 17791793, https://doi.org/10.1175/1520-0485(2002)032<1779:NEOTBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walter, R. K., E. C. Reid, K. A. Davis, K. J. Armenta, K. Merhoff, and N. J. Nidzieko, 2017: Local diurnal wind-driven variability and upwelling in a small coastal embayment. J. Geophys. Res. Oceans, 122, 955972, https://doi.org/10.1002/2016JC012466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Washburn, L., M. R. Fewings, C. Melton, and C. Gotschalk, 2011: The propagating response of coastal circulation due to wind relaxations along the central California coast. J. Geophys. Res., 116, C12028, https://doi.org/10.1029/2011JC007502.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 195 195 22
Full Text Views 66 66 15
PDF Downloads 97 97 18

Saturation of the Internal Tide over the Inner Continental Shelf. Part I: Observations

View More View Less
  • 1 a College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon
  • | 2 b Helmholtz-Zentrum Hereon, Institute of Coastal Research, Geesthacht, Germany
  • | 3 c Ocean Sciences Division, U.S. Naval Research Laboratory, Stennis Space Center, Mississippi
  • | 4 d Department of Oceanography, Naval Postgraduate School, Monterey Bay, California
  • | 5 e Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Broadly distributed measurements of velocity, density, and turbulence spanning the inner shelf off central California indicate that (i) the average shoreward-directed internal tide energy flux FE decreases to near 0 at the 25-m isobath; (ii) the vertically integrated turbulence dissipation rate D is approximately equal to the flux divergence of internal tide energy xFE; (iii) the ratio of turbulence energy dissipation in the interior relative to the bottom boundary layer (BBL) decreases toward shallow waters; (iv) going inshore, FE becomes decorrelated with the incoming internal wave energy flux; and (v) FE becomes increasingly correlated with stratification toward shallower water.

Significance statement

In addition to the well-known surface tide, there exists a tidal wave in the ocean’s interior. This internal tide is considered important to ocean mixing and may propagate thousands of kilometers to its demise on continental shelves, where it ultimately breaks down through a hierarchy of complicated fluid dynamics. Now, with the aid of new sensors massively deployed over California’s continental shelf, we have been able to determine that the energy lost to the shoaling internal tide goes almost completely to turbulence and is extinguished by the time it reaches the 25-m isobath. A surprising finding is that inshore of 50-m water depth the internal tide entirely loses memory of its initial strength.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Johannes Becherer, johannes.becherer@hereon.de

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JPO-D-21-0047.1.

Abstract

Broadly distributed measurements of velocity, density, and turbulence spanning the inner shelf off central California indicate that (i) the average shoreward-directed internal tide energy flux FE decreases to near 0 at the 25-m isobath; (ii) the vertically integrated turbulence dissipation rate D is approximately equal to the flux divergence of internal tide energy xFE; (iii) the ratio of turbulence energy dissipation in the interior relative to the bottom boundary layer (BBL) decreases toward shallow waters; (iv) going inshore, FE becomes decorrelated with the incoming internal wave energy flux; and (v) FE becomes increasingly correlated with stratification toward shallower water.

Significance statement

In addition to the well-known surface tide, there exists a tidal wave in the ocean’s interior. This internal tide is considered important to ocean mixing and may propagate thousands of kilometers to its demise on continental shelves, where it ultimately breaks down through a hierarchy of complicated fluid dynamics. Now, with the aid of new sensors massively deployed over California’s continental shelf, we have been able to determine that the energy lost to the shoaling internal tide goes almost completely to turbulence and is extinguished by the time it reaches the 25-m isobath. A surprising finding is that inshore of 50-m water depth the internal tide entirely loses memory of its initial strength.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Johannes Becherer, johannes.becherer@hereon.de

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JPO-D-21-0047.1.

Save