• Adcroft, A., C. Hill, J.-M. Campin, J. Marshall, and P. Heimbach, 2004: Overview of the formulation and numerics of the MIT GCM. Proc. Seminar on Recent Developments in Numerical Methods for Atmospheric and Ocean Modelling, Reading, United Kingdom, ECMWF, 139–149, https://www.ecmwf.int/node/7642.

  • Alexakis, A., 2005: On Holmboe’s instability for smooth shear and density profiles. Phys. Fluids, 17, 084103, https://doi.org/10.1063/1.2001567.

  • Antenucci, J. P., and J. Imberger, 2001: On internal waves near the high-frequency limit in an enclosed basin. J. Geophys. Res., 106, 22 46522 474, https://doi.org/10.1029/2000JC000465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baines, P. G., and H. Mitsudera, 1994: On the mechanism of shear flow instabilities. J. Fluid Mech., 276, 327342, https://doi.org/10.1017/S0022112094002582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carpenter, J. R., N. J. Balmforth, and G. A. Lawrence, 2010: Identifying unstable modes in stratified shear layers. Phys. Fluids, 22, 054104, https://doi.org/10.1063/1.3379845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carpenter, J. R., E. W. Tedford, E. Heifetz, and G. A. Lawrence, 2013: Instability in stratified shear flow: Review of a physical interpretation based on interacting waves. Appl. Mech. Rev., 64, 060801, https://doi.org/10.1115/1.4007909.

    • Search Google Scholar
    • Export Citation
  • Caulfield, C., 2021: Layering, instabilities, and mixing in turbulent stratified flows. Annu. Rev. Fluid Mech., 53, 113145, https://doi.org/10.1146/annurev-fluid-042320-100458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., and W. S. Kessler, 2009: Near-surface shear flow in the tropical Pacific cold tongue front. J. Phys. Oceanogr., 39, 12001215, https://doi.org/10.1175/2008JPO4064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Csanady, G. T., 1997: The “slip law” of the free surface. J. Oceanogr., 53, 6780, https://doi.org/10.1007/BF02700750.

  • Fairall, C. W., E. F. Bradley, J. S. Godfrey, G. A. Wick, J. B. Edson, and G. S. Young, 1996: Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res., 101, 12951308, https://doi.org/10.1029/95JC03190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentemann, C. L., P. J. Minnett, and B. Ward, 2009: Profiles of ocean surface heating (POSH): A new model of upper ocean diurnal warming. J. Geophys. Res., 114, C07017, https://doi.org/10.1029/2008JC004825..

    • Search Google Scholar
    • Export Citation
  • Gímez-Giraldo, A., J. Imberger, J. P. Antenucci, and P. S. Yeates, 2008: Wind-shear-generated high-frequency internal waves as precursors to mixing in a stratified lake. Limnol. Oceanogr., 53, 354367, https://doi.org/10.4319/lo.2008.53.1.0354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haigh, S. P., 1995: Non-symmetric Holmboe waves. Ph.D. thesis, University of British Columbia, 179 pp., https://doi.org/10.14288/1.0080013.

    • Crossref
    • Export Citation
  • Haigh, S. P., and G. A. Lawrence, 1999: Symmetric and nonsymmetric Holmboe instabilities in an inviscid flow. Phys. Fluids, 11, 14591468, https://doi.org/10.1063/1.870009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazel, P., 1972: Numerical studies of the stability of inviscid stratified shear flows. J. Fluid Mech., 51, 3961, https://doi.org/10.1017/S0022112072001065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmboe, J., 1962: On the behavior of symmetric waves in stratified shear layers. Geophys. Publ., 24, 67113.

  • Hughes, K. G., J. N. Moum, and E. L. Shroyer, 2020a: Evolution of the velocity structure in the diurnal warm layer. J. Phys. Oceanogr., 50, 615631, https://doi.org/10.1175/JPO-D-19-0207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, K. G., J. N. Moum, and E. L. Shroyer, 2020b: Heat transport through diurnal warm layers. J. Phys. Oceanogr., 50, 28852905, https://doi.org/10.1175/JPO-D-20-0079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaminski, A. K., and W. D. Smyth, 2019: Stratified shear instability in a field of pre-existing turbulence. J. Fluid Mech., 862, 639658, https://doi.org/10.1017/jfm.2018.973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. N., and A. V. Soloviev, 1990: Slippery near-surface layer of the ocean arising due to daytime solar heating. J. Phys. Oceanogr., 20, 617628, https://doi.org/10.1175/1520-0485(1990)020<0617:SNSLOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lian, Q., W. D. Smyth, and Z. Liu, 2020: Numerical computation of instabilities and internal waves from in situ measurements via the viscous Taylor–Goldstein problem. J. Atmos. Oceanic Technol., 37, 759776, https://doi.org/10.1175/JTECH-D-19-0155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, 57335752, https://doi.org/10.1029/96JC02776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moulin, A. J., J. N. Moum, and E. L. Shroyer, 2018: Evolution of turbulence in the diurnal warm layer. J. Phys. Oceanogr., 48, 383396, https://doi.org/10.1175/JPO-D-17-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., and J. J. Simpson, 1977: Irradiance measurements in the upper ocean. J. Phys. Oceanogr., 7, 952956, https://doi.org/10.1175/1520-0485(1977)007<0952:IMITUO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pham, H. T., and S. Sarkar, 2014: Evolution of an asymmetric turbulent shear layer in a thermocline. J. Turbul., 15, 449471, https://doi.org/10.1080/14685248.2014.914216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., P. B. Rhines, and R. O. R. Y. Thompson, 1972: The deepening of the wind-mixed layer. Geophys. Astrophys. Fluid Dyn., 4, 381404, https://doi.org/10.1080/03091927208236105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 84118427, https://doi.org/10.1029/JC091iC07p08411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salehipour, H., C. P. Caulfield, and W. R. Peltier, 2016: Turbulent mixing due to the Holmboe wave instability at high Reynolds number. J. Fluid Mech., 803, 591621, https://doi.org/10.1017/jfm.2016.488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarkar, S., and H. Pham, 2019: Turbulence and thermal structure in the upper ocean: Turbulence-resolving simulations. Flow Turbul. Combus., 103, 9851009, https://doi.org/10.1007/s10494-019-00065-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., and J. Moum, 2002: Shear instability and gravity wave saturation in an asymmetrically stratified jet. Dyn. Atmos. Oceans, 35, 265294, https://doi.org/10.1016/S0377-0265(02)00013-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., and J. Carpenter, 2019: Instability in Geophysical Flows. Cambridge University Press, 338 pp., https://doi.org/10.1017/9781108640084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., J. R. Carpenter, and G. A. Lawrence, 2007: Mixing in symmetric Holmboe waves. J. Phys. Oceanogr., 37, 15661583, https://doi.org/10.1175/JPO3037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., J. N. Moum, and J. D. Nash, 2011: Narrowband oscillations in the upper equatorial ocean. Part II: Properties of shear instabilities. J. Phys. Oceanogr., 41, 412428, https://doi.org/10.1175/2010JPO4451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., J. D. Nash, and J. N. Moum, 2019: Self-organized criticality in geophysical turbulence. Sci. Rep., 9, 3747, https://doi.org/10.1038/s41598-019-39869-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Sprintall, E. D. Maloney, Z. K. Martin, S. Wang, S. deSzoeke, B. Trabing, and S. A. Rutledge, 2021: Large-scale state and evolution of the atmosphere and ocean during PISTON 2018. J. Climate, 34, 50175035, https://doi.org/10.1175/JCLI-D-20-0517.1.

    • Search Google Scholar
    • Export Citation
  • Soloviev, A., and R. Lukas, 1996: Observation of spatial variability of diurnal thermocline and rain-formed halocline in the western Pacific warm pool. J. Phys. Oceanogr., 26, 25292538, https://doi.org/10.1175/1520-0485(1996)026<2529:OOSVOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soloviev, A., and R. Lukas, 1997: Observation of large diurnal warming events in the near-surface layer of the western equatorial Pacific warm pool. Deep-Sea Res., 44, 10551076, https://doi.org/10.1016/S0967-0637(96)00124-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, C., W. D. Smyth, and J. N. Moum, 1998: Dynamic instability of stratified shear flow in the upper equatorial Pacific. J. Geophys. Res., 103, 10 32310 337, https://doi.org/10.1029/98JC00191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutherland, G., L. Marié, G. Reverdin, K. H. Christensen, G. Broström, and B. Ward, 2016: Enhanced turbulence associated with the diurnal jet in the ocean surface boundary layer. J. Phys. Oceanogr., 46, 30513067, https://doi.org/10.1175/JPO-D-15-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tedford, E. W., J. R. Carpenter, R. Pawlowicz, R. Pieters, and G. A. Lawrence, 2009: Observation and analysis of shear instability in the Fraser River estuary. J. Geophys. Res. Oceans, 114, C11006, https://doi.org/10.1029/2009JC005313..

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tedford, E. W., S. MacIntyre, S. D. Miller, and M. J. Czikowsky, 2014: Similarity scaling of turbulence in a temperate lake during fall cooling. J. Geophys. Res. Oceans, 119, 46894713, https://doi.org/10.1002/2014JC010135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1978: The near-surface ocean mixing layer in stable heating conditions. J. Geophys. Res., 83, 28752885, https://doi.org/10.1029/JC083iC06p02875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., and A. J. Hall, 1977: Mixing in upper layer of a lake during heating cycle. Nature, 265, 719722, https://doi.org/10.1038/265719a0.

  • Thorpe, S. A., and Z. Liu, 2009: Marginal instability? J. Phys. Oceanogr., 39, 23732381, https://doi.org/10.1175/2009JPO4153.1.

  • Ushijima, Y., and Y. Yoshikawa, 2019: Mixed layer depth and sea surface warming under diurnally cycling surface heat flux in the heating season. J. Phys. Oceanogr., 49, 17691787, https://doi.org/10.1175/JPO-D-18-0230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Roekel, L., and et al. , 2018: The KPP boundary layer scheme for the ocean: Revisiting its formulation and benchmarking one-dimensional simulations relative to LES. J. Adv. Model. Earth Syst., 10, 26472685, https://doi.org/10.1029/2018MS001336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weller, R. A., and J. F. Price, 1988: Langmuir circulation within the oceanic mixed layer. Deep-Sea Res, 35A, 711747, https://doi.org/10.1016/0198-0149(88)90027-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijesekera, H. W., D. W. Wang, and E. Jarosz, 2020: Dynamics of the diurnal warm layer: Surface jet, high-frequency internal waves, and mixing. J. Phys. Oceanogr., 50, 20532070, https://doi.org/10.1175/JPO-D-19-0285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, J. D., 1980: Diurnal and seasonal variation of convection in the wind-mixed layer of the ocean. Quart. J. Roy. Meteor. Soc., 106, 379394, https://doi.org/10.1002/qj.49710644902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yonemitsu, N., G. E. Swaters, N. Rajaratnam, and G. A. Lawrence, 1996: Shear instabilities in arrested salt-wedge flows. Dyn. Atmos. Oceans, 24, 173182, https://doi.org/10.1016/0377-0265(95)00444-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 238 238 40
Full Text Views 65 65 22
PDF Downloads 91 91 30

Stratified Shear Instabilities in Diurnal Warm Layers

View More View Less
  • 1 a College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

In low winds (2 m s−1), diurnal warm layers form, but shear in the near-surface jet is too weak to generate shear instability and mixing. In high winds (8 m s−1), surface heat is rapidly mixed downward and diurnal warm layers do not form. Under moderate winds of 3–5 m s−1, the jet persists for several hours in a state that is susceptible to shear instability. We observe low Richardson numbers of Ri ≈ 0.1 in the top 2 m between 1000 and 1600 local time (LT) (from 4 h after sunrise to 2 h before sunset). Despite Ri being well below the Ri = ¼ threshold, instabilities do not grow quickly, nor do they overturn. The stabilizing influence of the sea surface limits growth, a result demonstrated by both linear stability analysis and two-dimensional simulations initialized from observed profiles. In some cases, growth rates are sufficiently small (≪1 h−1) that mixing is not expected even though Ri < ¼. This changes around 1600–1700 LT. Thereafter, convective cooling causes the region of unstable flow to move downward, away from the surface. This allows shear instabilities to grow an order-of-magnitude faster and mix effectively. We corroborate the overall observed diurnal cycle of instability with a freely evolving, two-dimensional simulation that is initialized from rest before sunrise.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kenneth G. Hughes, kenneth.hughes@oregonstate.edu

This article is included in the Air-sea interactions during PISTON, MISOBOB, and CAMP2Ex Special Collection.

Abstract

In low winds (2 m s−1), diurnal warm layers form, but shear in the near-surface jet is too weak to generate shear instability and mixing. In high winds (8 m s−1), surface heat is rapidly mixed downward and diurnal warm layers do not form. Under moderate winds of 3–5 m s−1, the jet persists for several hours in a state that is susceptible to shear instability. We observe low Richardson numbers of Ri ≈ 0.1 in the top 2 m between 1000 and 1600 local time (LT) (from 4 h after sunrise to 2 h before sunset). Despite Ri being well below the Ri = ¼ threshold, instabilities do not grow quickly, nor do they overturn. The stabilizing influence of the sea surface limits growth, a result demonstrated by both linear stability analysis and two-dimensional simulations initialized from observed profiles. In some cases, growth rates are sufficiently small (≪1 h−1) that mixing is not expected even though Ri < ¼. This changes around 1600–1700 LT. Thereafter, convective cooling causes the region of unstable flow to move downward, away from the surface. This allows shear instabilities to grow an order-of-magnitude faster and mix effectively. We corroborate the overall observed diurnal cycle of instability with a freely evolving, two-dimensional simulation that is initialized from rest before sunrise.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kenneth G. Hughes, kenneth.hughes@oregonstate.edu

This article is included in the Air-sea interactions during PISTON, MISOBOB, and CAMP2Ex Special Collection.

Save