• Adcroft, A., C. Hill, J.-M. Campin, J. Marshall, and P. Heimbach, 2004: Overview of the formulation and numerics of the MIT GCM. Proc. Seminar on Recent Developments in Numerical Methods for Atmospheric and Ocean Modelling, Reading, United Kingdom, ECMWF, 139–149, https://www.ecmwf.int/node/7642.

  • Alexakis, A., 2005: On Holmboe’s instability for smooth shear and density profiles. Phys. Fluids, 17, 084103, https://doi.org/10.1063/1.2001567.

  • Antenucci, J. P., and J. Imberger, 2001: On internal waves near the high-frequency limit in an enclosed basin. J. Geophys. Res., 106, 22 46522 474, https://doi.org/10.1029/2000JC000465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baines, P. G., and H. Mitsudera, 1994: On the mechanism of shear flow instabilities. J. Fluid Mech., 276, 327342, https://doi.org/10.1017/S0022112094002582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carpenter, J. R., N. J. Balmforth, and G. A. Lawrence, 2010: Identifying unstable modes in stratified shear layers. Phys. Fluids, 22, 054104, https://doi.org/10.1063/1.3379845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carpenter, J. R., E. W. Tedford, E. Heifetz, and G. A. Lawrence, 2013: Instability in stratified shear flow: Review of a physical interpretation based on interacting waves. Appl. Mech. Rev., 64, 060801, https://doi.org/10.1115/1.4007909.

    • Search Google Scholar
    • Export Citation
  • Caulfield, C., 2021: Layering, instabilities, and mixing in turbulent stratified flows. Annu. Rev. Fluid Mech., 53, 113145, https://doi.org/10.1146/annurev-fluid-042320-100458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., and W. S. Kessler, 2009: Near-surface shear flow in the tropical Pacific cold tongue front. J. Phys. Oceanogr., 39, 12001215, https://doi.org/10.1175/2008JPO4064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Csanady, G. T., 1997: The “slip law” of the free surface. J. Oceanogr., 53, 6780, https://doi.org/10.1007/BF02700750.

  • Fairall, C. W., E. F. Bradley, J. S. Godfrey, G. A. Wick, J. B. Edson, and G. S. Young, 1996: Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res., 101, 12951308, https://doi.org/10.1029/95JC03190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentemann, C. L., P. J. Minnett, and B. Ward, 2009: Profiles of ocean surface heating (POSH): A new model of upper ocean diurnal warming. J. Geophys. Res., 114, C07017, https://doi.org/10.1029/2008JC004825..

    • Search Google Scholar
    • Export Citation
  • Gímez-Giraldo, A., J. Imberger, J. P. Antenucci, and P. S. Yeates, 2008: Wind-shear-generated high-frequency internal waves as precursors to mixing in a stratified lake. Limnol. Oceanogr., 53, 354367, https://doi.org/10.4319/lo.2008.53.1.0354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haigh, S. P., 1995: Non-symmetric Holmboe waves. Ph.D. thesis, University of British Columbia, 179 pp., https://doi.org/10.14288/1.0080013.

    • Crossref
    • Export Citation
  • Haigh, S. P., and G. A. Lawrence, 1999: Symmetric and nonsymmetric Holmboe instabilities in an inviscid flow. Phys. Fluids, 11, 14591468, https://doi.org/10.1063/1.870009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazel, P., 1972: Numerical studies of the stability of inviscid stratified shear flows. J. Fluid Mech., 51, 3961, https://doi.org/10.1017/S0022112072001065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmboe, J., 1962: On the behavior of symmetric waves in stratified shear layers. Geophys. Publ., 24, 67113.

  • Hughes, K. G., J. N. Moum, and E. L. Shroyer, 2020a: Evolution of the velocity structure in the diurnal warm layer. J. Phys. Oceanogr., 50, 615631, https://doi.org/10.1175/JPO-D-19-0207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, K. G., J. N. Moum, and E. L. Shroyer, 2020b: Heat transport through diurnal warm layers. J. Phys. Oceanogr., 50, 28852905, https://doi.org/10.1175/JPO-D-20-0079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaminski, A. K., and W. D. Smyth, 2019: Stratified shear instability in a field of pre-existing turbulence. J. Fluid Mech., 862, 639658, https://doi.org/10.1017/jfm.2018.973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. N., and A. V. Soloviev, 1990: Slippery near-surface layer of the ocean arising due to daytime solar heating. J. Phys. Oceanogr., 20, 617628, https://doi.org/10.1175/1520-0485(1990)020<0617:SNSLOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lian, Q., W. D. Smyth, and Z. Liu, 2020: Numerical computation of instabilities and internal waves from in situ measurements via the viscous Taylor–Goldstein problem. J. Atmos. Oceanic Technol., 37, 759776, https://doi.org/10.1175/JTECH-D-19-0155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, 57335752, https://doi.org/10.1029/96JC02776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moulin, A. J., J. N. Moum, and E. L. Shroyer, 2018: Evolution of turbulence in the diurnal warm layer. J. Phys. Oceanogr., 48, 383396, https://doi.org/10.1175/JPO-D-17-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., and J. J. Simpson, 1977: Irradiance measurements in the upper ocean. J. Phys. Oceanogr., 7, 952956, https://doi.org/10.1175/1520-0485(1977)007<0952:IMITUO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pham, H. T., and S. Sarkar, 2014: Evolution of an asymmetric turbulent shear layer in a thermocline. J. Turbul., 15, 449471, https://doi.org/10.1080/14685248.2014.914216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., P. B. Rhines, and R. O. R. Y. Thompson, 1972: The deepening of the wind-mixed layer. Geophys. Astrophys. Fluid Dyn., 4, 381404, https://doi.org/10.1080/03091927208236105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 84118427, https://doi.org/10.1029/JC091iC07p08411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salehipour, H., C. P. Caulfield, and W. R. Peltier, 2016: Turbulent mixing due to the Holmboe wave instability at high Reynolds number. J. Fluid Mech., 803, 591621, https://doi.org/10.1017/jfm.2016.488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarkar, S., and H. Pham, 2019: Turbulence and thermal structure in the upper ocean: Turbulence-resolving simulations. Flow Turbul. Combus., 103, 9851009, https://doi.org/10.1007/s10494-019-00065-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., and J. Moum, 2002: Shear instability and gravity wave saturation in an asymmetrically stratified jet. Dyn. Atmos. Oceans, 35, 265294, https://doi.org/10.1016/S0377-0265(02)00013-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., and J. Carpenter, 2019: Instability in Geophysical Flows. Cambridge University Press, 338 pp., https://doi.org/10.1017/9781108640084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., J. R. Carpenter, and G. A. Lawrence, 2007: Mixing in symmetric Holmboe waves. J. Phys. Oceanogr., 37, 15661583, https://doi.org/10.1175/JPO3037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., J. N. Moum, and J. D. Nash, 2011: Narrowband oscillations in the upper equatorial ocean. Part II: Properties of shear instabilities. J. Phys. Oceanogr., 41, 412428, https://doi.org/10.1175/2010JPO4451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., J. D. Nash, and J. N. Moum, 2019: Self-organized criticality in geophysical turbulence. Sci. Rep., 9, 3747, https://doi.org/10.1038/s41598-019-39869-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Sprintall, E. D. Maloney, Z. K. Martin, S. Wang, S. deSzoeke, B. Trabing, and S. A. Rutledge, 2021: Large-scale state and evolution of the atmosphere and ocean during PISTON 2018. J. Climate, 34, 50175035, https://doi.org/10.1175/JCLI-D-20-0517.1.

    • Search Google Scholar
    • Export Citation
  • Soloviev, A., and R. Lukas, 1996: Observation of spatial variability of diurnal thermocline and rain-formed halocline in the western Pacific warm pool. J. Phys. Oceanogr., 26, 25292538, https://doi.org/10.1175/1520-0485(1996)026<2529:OOSVOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soloviev, A., and R. Lukas, 1997: Observation of large diurnal warming events in the near-surface layer of the western equatorial Pacific warm pool. Deep-Sea Res., 44, 10551076, https://doi.org/10.1016/S0967-0637(96)00124-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, C., W. D. Smyth, and J. N. Moum, 1998: Dynamic instability of stratified shear flow in the upper equatorial Pacific. J. Geophys. Res., 103, 10 32310 337, https://doi.org/10.1029/98JC00191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutherland, G., L. Marié, G. Reverdin, K. H. Christensen, G. Broström, and B. Ward, 2016: Enhanced turbulence associated with the diurnal jet in the ocean surface boundary layer. J. Phys. Oceanogr., 46, 30513067, https://doi.org/10.1175/JPO-D-15-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tedford, E. W., J. R. Carpenter, R. Pawlowicz, R. Pieters, and G. A. Lawrence, 2009: Observation and analysis of shear instability in the Fraser River estuary. J. Geophys. Res. Oceans, 114, C11006, https://doi.org/10.1029/2009JC005313..

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tedford, E. W., S. MacIntyre, S. D. Miller, and M. J. Czikowsky, 2014: Similarity scaling of turbulence in a temperate lake during fall cooling. J. Geophys. Res. Oceans, 119, 46894713, https://doi.org/10.1002/2014JC010135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1978: The near-surface ocean mixing layer in stable heating conditions. J. Geophys. Res., 83, 28752885, https://doi.org/10.1029/JC083iC06p02875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., and A. J. Hall, 1977: Mixing in upper layer of a lake during heating cycle. Nature, 265, 719722, https://doi.org/10.1038/265719a0.

  • Thorpe, S. A., and Z. Liu, 2009: Marginal instability? J. Phys. Oceanogr., 39, 23732381, https://doi.org/10.1175/2009JPO4153.1.

  • Ushijima, Y., and Y. Yoshikawa, 2019: Mixed layer depth and sea surface warming under diurnally cycling surface heat flux in the heating season. J. Phys. Oceanogr., 49, 17691787, https://doi.org/10.1175/JPO-D-18-0230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Roekel, L., and et al. , 2018: The KPP boundary layer scheme for the ocean: Revisiting its formulation and benchmarking one-dimensional simulations relative to LES. J. Adv. Model. Earth Syst., 10, 26472685, https://doi.org/10.1029/2018MS001336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weller, R. A., and J. F. Price, 1988: Langmuir circulation within the oceanic mixed layer. Deep-Sea Res, 35A, 711747, https://doi.org/10.1016/0198-0149(88)90027-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijesekera, H. W., D. W. Wang, and E. Jarosz, 2020: Dynamics of the diurnal warm layer: Surface jet, high-frequency internal waves, and mixing. J. Phys. Oceanogr., 50, 20532070, https://doi.org/10.1175/JPO-D-19-0285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, J. D., 1980: Diurnal and seasonal variation of convection in the wind-mixed layer of the ocean. Quart. J. Roy. Meteor. Soc., 106, 379394, https://doi.org/10.1002/qj.49710644902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yonemitsu, N., G. E. Swaters, N. Rajaratnam, and G. A. Lawrence, 1996: Shear instabilities in arrested salt-wedge flows. Dyn. Atmos. Oceans, 24, 173182, https://doi.org/10.1016/0377-0265(95)00444-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 300 300 43
Full Text Views 81 81 9
PDF Downloads 114 114 13

Stratified Shear Instabilities in Diurnal Warm Layers

View More View Less
  • 1 a College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

In low winds (2 m s−1), diurnal warm layers form, but shear in the near-surface jet is too weak to generate shear instability and mixing. In high winds (8 m s−1), surface heat is rapidly mixed downward and diurnal warm layers do not form. Under moderate winds of 3–5 m s−1, the jet persists for several hours in a state that is susceptible to shear instability. We observe low Richardson numbers of Ri ≈ 0.1 in the top 2 m between 1000 and 1600 local time (LT) (from 4 h after sunrise to 2 h before sunset). Despite Ri being well below the Ri = ¼ threshold, instabilities do not grow quickly, nor do they overturn. The stabilizing influence of the sea surface limits growth, a result demonstrated by both linear stability analysis and two-dimensional simulations initialized from observed profiles. In some cases, growth rates are sufficiently small (≪1 h−1) that mixing is not expected even though Ri < ¼. This changes around 1600–1700 LT. Thereafter, convective cooling causes the region of unstable flow to move downward, away from the surface. This allows shear instabilities to grow an order-of-magnitude faster and mix effectively. We corroborate the overall observed diurnal cycle of instability with a freely evolving, two-dimensional simulation that is initialized from rest before sunrise.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kenneth G. Hughes, kenneth.hughes@oregonstate.edu

This article is included in the Air-sea interactions during PISTON, MISOBOB, and CAMP2Ex Special Collection.

Abstract

In low winds (2 m s−1), diurnal warm layers form, but shear in the near-surface jet is too weak to generate shear instability and mixing. In high winds (8 m s−1), surface heat is rapidly mixed downward and diurnal warm layers do not form. Under moderate winds of 3–5 m s−1, the jet persists for several hours in a state that is susceptible to shear instability. We observe low Richardson numbers of Ri ≈ 0.1 in the top 2 m between 1000 and 1600 local time (LT) (from 4 h after sunrise to 2 h before sunset). Despite Ri being well below the Ri = ¼ threshold, instabilities do not grow quickly, nor do they overturn. The stabilizing influence of the sea surface limits growth, a result demonstrated by both linear stability analysis and two-dimensional simulations initialized from observed profiles. In some cases, growth rates are sufficiently small (≪1 h−1) that mixing is not expected even though Ri < ¼. This changes around 1600–1700 LT. Thereafter, convective cooling causes the region of unstable flow to move downward, away from the surface. This allows shear instabilities to grow an order-of-magnitude faster and mix effectively. We corroborate the overall observed diurnal cycle of instability with a freely evolving, two-dimensional simulation that is initialized from rest before sunrise.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kenneth G. Hughes, kenneth.hughes@oregonstate.edu

This article is included in the Air-sea interactions during PISTON, MISOBOB, and CAMP2Ex Special Collection.

Save