• Alford, M. H., 2010: Sustained, full-water-column observations of internal waves and mixing near mendocino escarpment. J. Phys. Oceanogr., 40, 26432660, https://doi.org/10.1175/2010JPO4502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., J. A. MacKinnon, H. L. Simmons, and J. D. Nash, 2016: Near-inertial internal gravity waves in the ocean. Annu. Rev. Mar. Sci., 8, 95123, https://doi.org/10.1146/annurev-marine-010814-015746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, T., 1975: Lee waves in stratified flows with simple harmonic time dependence. J. Fluid Mech., 67, 705722, https://doi.org/10.1017/S0022112075000560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brearley, J. A., K. L. Sheen, A. C. Naveira Garabato, D. A. Smeed, and S. Waterman, 2013: Eddy-induced modulation of turbulent dissipation over rough topography in the Southern Ocean. J. Phys. Oceanogr., 43, 22882308, https://doi.org/10.1175/JPO-D-12-0222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, S., 2013: An empirical investigation of energy transfer from the m2 tide to m2 subharmonic wave motions in the kauai channel. M.S. thesis, Dept. of Oceanography, University of Hawai‘i at Mānoa, 90 pp.

    • Crossref
    • Export Citation
  • Cusack, J. M., A. C. Naveira Garabato, D. A. Smeed, and J. B. Girton, 2017: Observation of a large lee wave in the Drake Passage. J. Phys. Oceanogr., 47, 793810, https://doi.org/10.1175/JPO-D-16-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cusack, J. M., J. A. Brearley, A. C. Naveira Garabato, D. A. Smeed, K. L. Polzin, N. Velzeboer, and C. J. Shakespeare, 2020: Observed eddy–internal wave interactions in the Southern Ocean. J. Phys. Oceanogr., 50, 30433062, https://doi.org/10.1175/JPO-D-20-0001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Lavergne, C., G. Madec, J. Le Sommer, A. G. Nurser, and A. C. Naveira Garabato, 2016: The impact of a variable mixing efficiency on the abyssal overturning. J. Phys. Oceanogr., 46, 663681, https://doi.org/10.1175/JPO-D-14-0259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., and A. M. C. Hogg, 2010: Topographic inviscid dissipation of balanced flow. Ocean Modell., 32, 113, https://doi.org/10.1016/j.ocemod.2009.03.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1960: On the transfer of energy in stationary mountain waves. Geophy. Publ., 22, 123.

  • Evans, D. G., E. Frajka-Williams, A. C. Naveira Garabato, K. L. Polzin, and A. Forryan, 2020: Mesoscale eddy dissipation by a “zoo” of submesoscale processes at a western boundary. J. Geophys. Res. Oceans, 125, e2020JC016246, https://doi.org/10.1029/2020JC016246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ezhova, E., C. Cenedese, and L. Brandt, 2018: Dynamics of three-dimensional turbulent wall plumes and implications for estimates of submarine glacier melting. J. Phys. Oceanogr., 48, 19411950, https://doi.org/10.1175/JPO-D-17-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabregat Tomàs, A., A. C. Poje, T. M. Özgökmen, and W. K. Dewar, 2016: Dynamics of multiphase turbulent plumes with hybrid buoyancy sources in stratified environments. Phys. Fluids, 28, 095109, https://doi.org/10.1063/1.4963313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Firing, E., J. M. Hummon, and T. K. Chereskin, 2012: Improving the quality and accessibility of current profile measurements in the Southern Ocean. Oceanography, 25, 164165, https://doi.org/10.5670/oceanog.2012.91.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, P. F., 1997: An overlapping schwarz method for spectral element solution of the incompressible Navier–Stokes equations. J. Comput. Phys., 133, 84101, https://doi.org/10.1006/jcph.1997.5651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, P. F., J. W. Lottes, and S. G. Kerkemeier, 2008: Nek5000 web page. http://nek5000.mcs.anl.gov.

  • Frajka-Williams, E., E. Kunze, and J. A. MacKinnon, 2014: Bispectra of internal tides and parametric subharmonic instability. arXiv, 23 pp., https://arxiv.org/abs/1410.0926.

  • Garrett, C., and E. Kunze, 2007: Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech., 39, 5787, https://doi.org/10.1146/annurev.fluid.39.050905.110227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gayen, B., R. W. Griffiths, and G. O. Hughes, 2014: Stability transitions and turbulence in horizontal convection. J. Fluid Mech., 751, 698724, https://doi.org/10.1017/jfm.2014.302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goff, J. A., and T. H. Jordan, 1988: Stochastic modeling of seafloor morphology: Inversion of sea beam data for second-order statistics. J. Geophys. Res., 93, 13 58913 608, https://doi.org/10.1029/JB093iB11p13589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., T. B. Sanford, and D. P. Winkel, 2003: Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422, 513515, https://doi.org/10.1038/nature01507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grisouard, N., and L. N. Thomas, 2015: Critical and near-critical reflections of near-inertial waves off the sea surface at ocean fronts. J. Fluid Mech., 765, 273302, https://doi.org/10.1017/jfm.2014.725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Q., and et al. , 2020: Cascade of internal wave energy catalyzed by eddy-topography interactions in the deep South China Sea. Geophys. Res. Lett., 47, https://doi.org/10.1029/2019GL086510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, G. O., A. M. C. Hogg, and R. W. Griffiths, 2009: Available potential energy and irreversible mixing in the meridional overturning circulation. J. Phys. Oceanogr., 39, 31303146, https://doi.org/10.1175/2009JPO4162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ijichi, T., and T. Hibiya, 2017: Eikonal calculations for energy transfer in the deep-ocean internal wave field near mixing hotspots. J. Phys. Oceanogr., 47, 199210, https://doi.org/10.1175/JPO-D-16-0093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jagannathan, A., K. B. Winters, and L. Armi, 2020: The effect of a strong density step on blocked stratified flow over topography. J. Fluid Mech., 889, A23, https://doi.org/10.1017/jfm.2020.87.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., 2018: Nonpropagating form drag and turbulence due to stratified flow over large-scale abyssal hill topography. J. Phys. Oceanogr., 48, 23832395, https://doi.org/10.1175/JPO-D-17-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., S. M. Legg, and R. Pinkel, 2010: High-mode stationary waves in stratified flow over large obstacles. J. Fluid Mech., 644, 321336, https://doi.org/10.1017/S0022112009992503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., D. Balwada, A. Naveira Garabato, and R. Abernathey, 2021: Parameterizing non-propagating form drag over rough bathymetry. J. Phys. Oceanogr., 51, 14891501, https://doi.org/10.1175/JPO-D-20-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., and R.-C. Lien, 2019: Energy sinks for lee waves in shear flow. J. Phys. Oceanogr., 49, 28512865, https://doi.org/10.1175/JPO-D-19-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legg, S., and J. Klymak, 2008: Internal hydraulic jumps and overturning generated by tidal flow over a tall steep ridge. J. Phys. Oceanogr., 38, 19491964, https://doi.org/10.1175/2008JPO3777.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., and A. M. Thurnherr, 2012: Eddy-modulated internal waves and mixing on a midocean ridge. J. Phys. Oceanogr., 42, 12421248, https://doi.org/10.1175/JPO-D-11-0126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lvov, Y. V., K. L. Polzin, and N. Yokoyama, 2012: Resonant and near-resonant internal wave interactions. J. Phys. Oceanogr., 42, 669691, https://doi.org/10.1175/2011JPO4129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through southern ocean upwelling. Nat. Geosci., 5, 171180, https://doi.org/10.1038/ngeo1391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mashayek, A., and W. Peltier, 2012: The ‘zoo’ of secondary instabilities precursory to stratified shear flow transition. Part 1 Shear aligned convection, pairing, and braid instabilities. J. Fluid Mech., 708, 544, https://doi.org/10.1017/jfm.2012.304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mashayek, A., H. Salehipour, D. Bouffard, C. Caulfield, R. Ferrari, M. Nikurashin, W. Peltier, and W. Smyth, 2017: Efficiency of turbulent mixing in the abyssal ocean circulation. Geophys. Res. Lett., 44, 62966306, https://doi.org/10.1002/2016GL072452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayer, F. T., and O. B. Fringer, 2017: An unambiguous definition of the Froude number for lee waves in the deep ocean. J. Fluid Mech., 831, R3, https://doi.org/10.1017/jfm.2017.701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayer, F. T., and O. B. Fringer, 2020: Improving nonlinear and nonhydrostatic ocean lee wave drag parameterizations. J. Phys. Oceanogr., 50, 24172435, https://doi.org/10.1175/JPO-D-20-0070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McComas, C., and M. Briscoe, 1980: Bispectra of internal waves. J. Fluid Mech., 97, 205213, https://doi.org/10.1017/S0022112080002510.

  • Mercier, M. J., N. B. Garnier, and T. Dauxois, 2008: Reflection and diffraction of internal waves analyzed with the Hilbert transform. Phys. Fluids, 20, 086601, https://doi.org/10.1063/1.2963136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musgrave, R., J. MacKinnon, R. Pinkel, A. Waterhouse, J. Nash, and S. Kelly, 2017: The influence of subinertial internal tides on near-topographic turbulence at the Mendocino Ridge: Observations and modeling. J. Phys. Oceanogr., 47, 21392154, https://doi.org/10.1175/JPO-D-16-0278.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neshyba, S., and E. Sobey, 1975: Vertical cross coherence and cross bispectra between internal waves measured in a multiple-layered ocean. J. Geophys. Res., 80, 11521162, https://doi.org/10.1029/JC080i009p01152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2010a: Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Application to the Southern Ocean. J. Phys. Oceanogr., 40, 20252042, https://doi.org/10.1175/2010JPO4315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2010b: Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Theory. J. Phys. Oceanogr., 40, 10551074, https://doi.org/10.1175/2009JPO4199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and G. Vallis, 2011: A theory of deep stratification and overturning circulation in the ocean. J. Phys. Oceanogr., 41, 485502, https://doi.org/10.1175/2010JPO4529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., R. Ferrari, N. Grisouard, and K. Polzin, 2014: The impact of finite-amplitude bottom topography on internal wave generation in the Southern Ocean. J. Phys. Oceanogr., 44, 29382950, https://doi.org/10.1175/JPO-D-13-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Özgökmen, T. M., P. F. Fischer, J. Duan, and T. Iliescu, 2004: Entrainment in bottom gravity currents over complex topography from three-dimensional nonhydrostatic simulations. Geophys. Res. Lett., 31, L13212, https://doi.org/10.1029/2004GL020186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., A. C. N. Garabato, T. N. Huussen, B. M. Sloyan, and S. Waterman, 2014: Finescale parameterizations of turbulent dissipation. J. Geophys. Res. Oceans, 119, 13831419, https://doi.org/10.1002/2013JC008979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salehipour, H., W. Peltier, and A. Mashayek, 2015: Turbulent diapycnal mixing in stratified shear flows: The influence of Prandtl number on mixing efficiency and transition at high Reynolds number. J. Fluid Mech., 773, 178223, https://doi.org/10.1017/jfm.2015.225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., and A. M. Hogg, 2017: The viscous lee wave problem and its implications for ocean modelling. Ocean Modell., 113, 2229, https://doi.org/10.1016/j.ocemod.2017.03.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheen, K., and et al. , 2013: Rates and mechanisms of turbulent dissipation and mixing in the southern ocean: Results from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). J. Geophys. Res. Oceans, 118, 27742792, https://doi.org/10.1002/jgrc.20217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., A. C. Naveira Garabato, J. R. Ledwell, A. M. Thurnherr, J. M. Toole, and A. J. Watson, 2012: Turbulence and diapycnal mixing in Drake Passage. J. Phys. Oceanogr., 42, 21432152, https://doi.org/10.1175/JPO-D-12-027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2013: Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography, 26, 8097, https://doi.org/10.5670/oceanog.2013.07.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trossman, D., S. Waterman, K. Polzin, B. Arbic, S. Garner, A. Naveira-Garabato, and K. Sheen, 2015: Internal lee wave closures: Parameter sensitivity and comparison to observations. J. Geophys. Res. Oceans, 120, 79978019, https://doi.org/10.1002/2015JC010892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanneste, J., 2013: Balance and spontaneous wave generation in geophysical flows. Annu. Rev. Fluid Mech., 45, 147172, https://doi.org/10.1146/annurev-fluid-011212-140730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venaille, A., 2020: Quasi-geostrophy against the wall. J. Fluid Mech., 894, R1, https://doi.org/10.1017/jfm.2020.287.

  • Waterman, S., A. C. Naveira Garabato, and K. L. Polzin, 2013: Internal waves and turbulence in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 43, 259282, https://doi.org/10.1175/JPO-D-11-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterman, S., K. L. Polzin, A. C. Naveira Garabato, K. L. Sheen, and A. Forryan, 2014: Suppression of internal wave breaking in the Antarctic Circumpolar Current near topography. J. Phys. Oceanogr., 44, 14661492, https://doi.org/10.1175/JPO-D-12-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whalen, C., L. Talley, and J. MacKinnon, 2012: Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophys. Res. Lett., 39, 18612, https://doi.org/10.1029/2012GL053196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winters, K. B., and L. Armi, 2012: Hydraulic control of continuously stratified flow over an obstacle. J. Fluid Mech., 700, 502513, https://doi.org/10.1017/jfm.2012.157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, https://doi.org/10.1146/annurev.fluid.36.050802.122121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., M. Nikurashin, A. M. Hogg, and B. M. Sloyan, 2018: Energy loss from transient eddies due to lee wave generation in the Southern Ocean. J. Phys. Oceanogr., 48, 28672885, https://doi.org/10.1175/JPO-D-18-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zemskova, V. E., B. L. White, and A. Scotti, 2015: Available potential energy and the general circulation: Partitioning wind, buoyancy forcing, and diapycnal mixing. J. Phys. Oceanogr., 45, 15101531, https://doi.org/10.1175/JPO-D-14-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, K., and M. Nikurashin, 2019: Downstream propagation and remote dissipation of internal waves in the Southern Ocean. J. Phys. Oceanogr., 49, 18731887, https://doi.org/10.1175/JPO-D-18-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 270 270 114
Full Text Views 80 80 41
PDF Downloads 109 109 55

Near-Inertial Dissipation due to Stratified Flow over Abyssal Topography

View More View Less
  • 1 a Department of Physics, University of Toronto, Toronto, Ontario, Canada
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Linear theory for steady stratified flow over topography sets the range for topographic wavenumbers over which freely propagating internal waves are generated, and the radiation and breaking of these waves contribute to energy dissipation away from the ocean bottom. However, previous numerical work demonstrated that dissipation rates can be enhanced by flow over large-scale topographies with wavenumbers outside of the lee wave radiative range. We conduct idealized 3D numerical simulations of steady stratified flow over 1D topography in a rotating domain and quantify vertical distribution of kinetic energy dissipation. We vary two parameters: the first determines whether the topographic obstacle is within the lee wave radiative range and the second, proportional to the topographic height, measures the degree of flow nonlinearity. For certain combinations of topographic width and height, breaking occurs in pulses every inertial period, such that kinetic energy dissipation develops inertial periodicity. In these simulations, kinetic energy dissipation rates are also enhanced in the interior of the domain. In the radiative regime the inertial motions arise due to resonant wave–wave interactions. In the small wavenumber nonradiative regime, instabilities downstream of the obstacle can facilitate the generation and propagation of nonlinearly forced inertial motions, especially as topographic height increase. In our simulations, dissipation rates for tall and wide nonradiative topography are comparable to those of radiative topography, even away from the bottom, which is relevant to the ocean where the topographic spectrum is such that wider abyssal hills also tend to be taller.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Varvara E. Zemskova, barbara.zemskova@utoronto.ca

Abstract

Linear theory for steady stratified flow over topography sets the range for topographic wavenumbers over which freely propagating internal waves are generated, and the radiation and breaking of these waves contribute to energy dissipation away from the ocean bottom. However, previous numerical work demonstrated that dissipation rates can be enhanced by flow over large-scale topographies with wavenumbers outside of the lee wave radiative range. We conduct idealized 3D numerical simulations of steady stratified flow over 1D topography in a rotating domain and quantify vertical distribution of kinetic energy dissipation. We vary two parameters: the first determines whether the topographic obstacle is within the lee wave radiative range and the second, proportional to the topographic height, measures the degree of flow nonlinearity. For certain combinations of topographic width and height, breaking occurs in pulses every inertial period, such that kinetic energy dissipation develops inertial periodicity. In these simulations, kinetic energy dissipation rates are also enhanced in the interior of the domain. In the radiative regime the inertial motions arise due to resonant wave–wave interactions. In the small wavenumber nonradiative regime, instabilities downstream of the obstacle can facilitate the generation and propagation of nonlinearly forced inertial motions, especially as topographic height increase. In our simulations, dissipation rates for tall and wide nonradiative topography are comparable to those of radiative topography, even away from the bottom, which is relevant to the ocean where the topographic spectrum is such that wider abyssal hills also tend to be taller.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Varvara E. Zemskova, barbara.zemskova@utoronto.ca
Save