• Alford, M. H., 2001: Internal swell generation: The spatial distribution of energy flux from the wind to mixed-layer near-inertial motions. J. Phys. Oceanogr., 31, 23592368, https://doi.org/10.1175/1520-0485(2001)031<2359:ISGTSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2003: Energy available for ocean mixing redistributed through long-range propagation of internal waves. Nature, 423, 159163, https://doi.org/10.1038/nature01628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2020: Re-visiting near-inertial wind work: Slab models, relative stress and mixed-layer deepening. J. Phys. Oceanogr., 50, 31413156, https://doi.org/10.1175/JPO-D-20-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and M. Whitmont, 2007: Seasonal and spatial variability of near-inertial kinetic energy from historical moored velocity records. J. Phys. Oceanogr., 37, 20222037, https://doi.org/10.1175/JPO3106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., J. A. MacKinnon, H. L. Simmons, and J. D. Nash, 2015: Near-inertial internal waves in the ocean. Annu. Rev. Mar. Sci., 8, 95123, https://doi.org/10.1146/annurev-marine-010814-015746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bühler, O., and M. McIntyre, 2005: Wave capture and wave-vortex duality. J. Fluid Mech., 534, 6795, https://doi.org/10.1017/S0022112005004374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cairns, J. L., and G. O. Williams, 1976: Internal wave observations from a midwater float, 2. J. Geophys. Res., 81, 19431950, https://doi.org/10.1029/JC081i012p01943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clément, L., E. Frajka-Williams, Z. Szuts, and S. Cunningham, 2014: Vertical structure of eddies and rossby waves, and their effect on the Atlantic meridional overturning circulation at 26.5°N. J. Geophys. Res. Oceans, 119, 64796498, https://doi.org/10.1002/2014JC010146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clément, L., E. Frajka-Williams, K. L. Sheen, J. A. Brearley, and A. C. N. Garabato, 2016: Generation of internal waves by eddies impinging on the western boundary of the North Atlantic. J. Phys. Oceanogr., 46, 10671079, https://doi.org/10.1175/JPO-D-14-0241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., S. Falahat, G. Madec, F. Roquet, J. Nycander, and C. Vic, 2019: Toward global maps of internal tide energy sinks. Ocean Modell., 137, 5275, https://doi.org/10.1016/j.ocemod.2019.03.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G., and S. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C. J., 1972: Stability of finite amplitude internal waves in a shear flow. Geophys. Fluid Dyn., 4, 9199, https://doi.org/10.1080/03091927208236091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C. J., and T. M. Joyce, 1979: On the internal wave variability during the internal wave experiment (IWEX). J. Geophys. Res., 84, 769776, https://doi.org/10.1029/JC084iC02p00769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furuichi, N., T. Hibiya, and Y. Niwa, 2008: Model predicted distribution of wind-induced internal wave energy in the world’s oceans. J. Geophys. Res., 113, C09034, https://doi.org/10.1029/2008JC004768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., 1990: Do we really know how to scale the turbulent kinetic energy dissipation rate ε due to breaking of oceanic internal waves? J. Geophys. Res., 95, 15 97115 974, https://doi.org/10.1029/JC095iC09p15971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1972: Space-time scales of internal waves. Geophys. Fluid Dyn., 3, 225264, https://doi.org/10.1080/03091927208236082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1975: Space-time scales of internal waves: A progress report. J. Geophys. Res., 80, 291297, https://doi.org/10.1029/JC080i003p00291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 96869698, https://doi.org/10.1029/JC094iC07p09686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., T. B. Sanford, and D. P. Winkel, 2003: Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422, 513515, https://doi.org/10.1038/nature01507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1966: Feynman diagrams and interaction rules of wave-wave scattering processes. Rev. Geophys., 4, 132, https://doi.org/10.1029/RG004i001p00001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henyey, F. S., J. Wright, and S. M. Flatté, 1986: Energy and action flow through the internal wave field: An eikonal approach. J. Geophys. Res., 91, 84878495, https://doi.org/10.1029/JC091iC07p08487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., 1985: Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544565, https://doi.org/10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., E. Firing, J. Hummon, T. K. Chereskin, and A. Thurnherr, 2006: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 36, 15531576, https://doi.org/10.1175/JPO2926.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leaman, K. D., and T. B. Sanford, 1975: Vertical energy propagation of inertial waves: A vector spectral analysis of velocity profiles. J. Geophys. Res., 80, 19751978, https://doi.org/10.1029/JC080i015p01975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., and T. P. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, U.S. Department of Commerce, 117 pp.

  • Lvov, Y. V., K. L. Polzin, and N. Yokoyama, 2012: Resonant and near-resonant internal wave interactions. J. Phys. Oceanogr., 42, 669691, https://doi.org/10.1175/2011JPO4129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., M. H. Alford, R. Pinkel, J. Klymak, and Z. Zhao, 2013: The latitudinal dependence of shear and mixing in the Pacific transiting the critical latitude for PSI. J. Phys. Oceanogr., 43, 316, https://doi.org/10.1175/JPO-D-11-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McComas, C. H., and P. Müller, 1981: The dynamic balance of internal waves. J. Phys. Oceanogr., 11, 970986, https://doi.org/10.1175/1520-0485(1981)011<0970:TDBOIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, P., G. Holloway, F. Henyey, and N. Pomphrey, 1986: Nonlinear interactions among internal gravity waves. Rev. Geophys., 24, 493536, https://doi.org/10.1029/RG024i003p00493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2010: Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Application to the Southern Ocean. J. Phys. Oceanogr., 40, 20252042, https://doi.org/10.1175/2010JPO4315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., R. Ferrari, N. Grisouard, and K. Polzin, 2014: The impact of finite-amplitude bottom topography on internal wave generation in the Southern Ocean. J. Phys. Oceanogr., 44, 29382950, https://doi.org/10.1175/JPO-D-13-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olbers, D. J., 1974: On the Energy Balance of Small-Scale Internal Waves in the Deep-Sea. Hamburger Geophysikalische Einzelschriften 24, G. M. L. Wittenborn, 91 pp.

  • Olbers, D., 1976: Nonlinear energy transfer and the energy balance of the internal wave field in the deep ocean. J. Fluid Mech., 74, 375399, https://doi.org/10.1017/S0022112076001857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olbers, D., and C. Eden, 2016: Revisiting the generation of internal waves by resonant interaction with surface waves. J. Phys. Oceanogr., 46, 23352350, https://doi.org/10.1175/JPO-D-15-0064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olbers, D., F. Pollmann, and C. Eden, 2020: On psi interactions in internal gravity wave fields and the decay of baroclinic tides. J. Phys. Oceanogr., 50, 751771, https://doi.org/10.1175/JPO-D-19-0224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollmann, F., 2020: Global characterization of the ocean’s internal wave spectrum. J. Phys. Oceanogr., 50, 18711891, https://doi.org/10.1175/JPO-D-19-0185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2008: Mesoscale eddy-internal wave coupling. Part I: Symmetry, wave capture, and results from the mid-ocean dynamics experiment. J. Phys. Oceanogr., 38, 25562574, https://doi.org/10.1175/2008JPO3666.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2010: Mesoscale eddy-internal wave coupling. Part II: Energetics and results from PolyMode. J. Phys. Oceanogr., 40, 789801, https://doi.org/10.1175/2009JPO4039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., and Y. V. Lvov, 2011: Toward regional characterizations of the oceanic internal wavefield. Rev. Geophys., 49, RG4003, https://doi.org/10.1029/2010RG000329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, and R. W. Schmitt, 1995: Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr., 25, 306328, https://doi.org/10.1175/1520-0485(1995)025<0306:FPOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., A. C. Naveira Garabato, T. N. Huussen, B. M. Sloyan, and S. Waterman, 2014: Finescale parameterizations of turbulent dissipation. J. Geophys. Res. Oceans, 119, 13831419, https://doi.org/10.1002/2013JC008979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riedel, K. S., and A. Sidorenko, 1995: Minimum bias multiple taper spectral estimation. IEEE Trans. Sig. Proc., 43, 188195, https://doi.org/10.1109/78.365298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarkar, S., and A. Scotti, 2017: From topographic internal gravity waves to turbulence. Annu. Rev. Fluid Mech., 49, 195220, https://doi.org/10.1146/annurev-fluid-010816-060013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R., J. Goff, A. Garabato, and A. Nurser, 2011: Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography. J. Geophys. Res., 116, C09029, https://doi.org/10.1029/2011JC007005.

    • Search Google Scholar
    • Export Citation
  • Silverthorne, K. E., and J. M. Toole, 2009: Seasonal kinetic energy variability of near-inertial motions. J. Phys. Oceanogr., 39, 10351049, https://doi.org/10.1175/2008JPO3920.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurnherr, A. M., E. Kunze, J. M. Toole, L. St. Laurent, K. J. Richards, and A. Ruiz-Angulo, 2015: Vertical kinetic energy and turbulent dissipation in the ocean. Geophys. Res. Lett., 42, 76397647, https://doi.org/10.1002/2015GL065043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and T. Hibiya, 2002: Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Lett., 29, 1239, https://doi.org/10.1029/2001GL014422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and et al. , 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, https://doi.org/10.1175/JPO-D-13-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, K. M., 1985: Interaction between internal waves and mesoscale flow. J. Phys. Oceanogr., 15, 12961311, https://doi.org/10.1175/1520-0485(1985)015<1296:IBIWAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, K. M., 1990: The coupling of surface and internal gravity waves: Revisited. J. Phys. Oceanogr., 20, 12331248, https://doi.org/10.1175/1520-0485(1990)020<1233:TCOSAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, K. M., 1994: Energy transfer between surface and internal waves in the north pacific ocean. J. Geophys. Res., 99, 12 54912 560, https://doi.org/10.1029/94JC00570.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, F., 1969: Turbulence spectra in the ocean. Deep-Sea Res. Oceanogr. Abstr., 16 (Suppl.), 357368.

  • Whalen, C. B., J. A. MacKinnon, L. D. Talley, and A. F. Waterhouse, 2015: Estimating the mean diapycnal mixing using a finescale strain parameterization. J. Phys. Oceanogr., 45, 11741188, https://doi.org/10.1175/JPO-D-14-0167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., C. de Lavergne, J. M. Klymak, A. C. N. Garabato, K. L. Sheen, and J. A. MacKinnon, 2020: Internal wave-driven mixing: Governing processes and consequences for climate. Nat. Rev. Earth Environ., 1, 606621, https://doi.org/10.1038/s43017-020-0097-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijesekera, H. W., L. Padman, T. Dillon, M. Levine, C. Paulson, and R. Pinkel, 1993: The application of internal-wave dissipation models to a region of strong mixing. J. Phys. Oceanogr., 23, 269286, https://doi.org/10.1175/1520-0485(1993)023<0269:TAOIWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, C. J., R. B. Scott, P. Ailliot, and D. Furnival, 2014: Lee wave generation rates in the deep ocean. Geophys. Res. Lett., 41, 24342440, https://doi.org/10.1002/2013GL059087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, https://doi.org/10.1146/annurev.fluid.36.050802.122121.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 188 188 18
Full Text Views 78 78 22
PDF Downloads 101 101 30

Variability and Sources of the Internal Wave Continuum Examined from Global Moored Velocity Records

View More View Less
  • 1 a Marine Physical Laboratory, Scripps Institution of Oceanography University of California, San Diego, La Jolla, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Energy for ocean turbulence is thought to be transferred from its presumed sources (viz., the mesoscale eddy field, near-inertial internal waves, and internal tides) to the internal wave continuum, and through the continuum via resonant triad interactions to breaking scales. To test these ideas, the level and variability of the oceanic internal gravity wave continuum spectrum are examined by computing time-dependent rotary spectra from a global database of 2260 current meter records deployed on 1362 separate moorings. Time series of energy in the continuum and the three “source bands” (near-inertial, tidal, and mesoscale) are computed, and their variability and covariability examined. Seasonal modulation of the continuum by factors of up to 5 is seen in the upper ocean, implicating wind-driven near-inertial waves as an important source. The time series of the continuum is found to correlate more strongly with the near-inertial peak than with the semidiurnal or mesoscale. The use of moored internal-wave kinetic energy frequency spectra as an alternate input to the traditional shear or strain wavenumber spectra in the Gregg–Henyey–Polzin finescale parameterization is explored and compared to traditional strain-based estimates.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Arnaud Le Boyer, aleboyer@ucsd.edu

Abstract

Energy for ocean turbulence is thought to be transferred from its presumed sources (viz., the mesoscale eddy field, near-inertial internal waves, and internal tides) to the internal wave continuum, and through the continuum via resonant triad interactions to breaking scales. To test these ideas, the level and variability of the oceanic internal gravity wave continuum spectrum are examined by computing time-dependent rotary spectra from a global database of 2260 current meter records deployed on 1362 separate moorings. Time series of energy in the continuum and the three “source bands” (near-inertial, tidal, and mesoscale) are computed, and their variability and covariability examined. Seasonal modulation of the continuum by factors of up to 5 is seen in the upper ocean, implicating wind-driven near-inertial waves as an important source. The time series of the continuum is found to correlate more strongly with the near-inertial peak than with the semidiurnal or mesoscale. The use of moored internal-wave kinetic energy frequency spectra as an alternate input to the traditional shear or strain wavenumber spectra in the Gregg–Henyey–Polzin finescale parameterization is explored and compared to traditional strain-based estimates.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Arnaud Le Boyer, aleboyer@ucsd.edu
Save