Momentum Governors of California Undercurrent Transport

Ru Chen aSchool of Marine Science and Technology, Tianjin University, Tianjin, China

Search for other papers by Ru Chen in
Current site
Google Scholar
PubMed
Close
,
James C. McWilliams bDepartment of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by James C. McWilliams in
Current site
Google Scholar
PubMed
Close
, and
Lionel Renault cLEGOS, University of Toulouse, IRD, CNRS, CNES, UPS, Toulouse, France
bDepartment of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Lionel Renault in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The California Undercurrent (CUC) transport, with significant variability ranging from weeks to decades, has consequences for both the climate and biogeochemistry of the California Current system. This study evaluates the governors of the CUC transport and its temporal variability from a momentum perspective, using a mesoscale-resolving regional model. From a 16-yr mean perspective, the along-isobath pressure gradient acts to accelerate the CUC, whereas eddy advection retards it. The topographic form stress, which is part of the volume integrated along-isobath pressure gradient, not only acts in the direction of the time-mean CUC, but also greatly modulates the temporal variability of the CUC transport. This temporal variability is also correlated with the eddy momentum advection. The eddy stress plays a role in transferring both the equatorward wind stress and poleward CUC momentum downward. A theory is formulated to show that, in addition to the conventional vertical redistribution of momentum, the eddy stress can also redistribute momentum horizontally in the area where the correlation between the pressure anomaly and isopycnal fluctuations has large spatial variability.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ru Chen, ruchen@alum.mit.edu

Abstract

The California Undercurrent (CUC) transport, with significant variability ranging from weeks to decades, has consequences for both the climate and biogeochemistry of the California Current system. This study evaluates the governors of the CUC transport and its temporal variability from a momentum perspective, using a mesoscale-resolving regional model. From a 16-yr mean perspective, the along-isobath pressure gradient acts to accelerate the CUC, whereas eddy advection retards it. The topographic form stress, which is part of the volume integrated along-isobath pressure gradient, not only acts in the direction of the time-mean CUC, but also greatly modulates the temporal variability of the CUC transport. This temporal variability is also correlated with the eddy momentum advection. The eddy stress plays a role in transferring both the equatorward wind stress and poleward CUC momentum downward. A theory is formulated to show that, in addition to the conventional vertical redistribution of momentum, the eddy stress can also redistribute momentum horizontally in the area where the correlation between the pressure anomaly and isopycnal fluctuations has large spatial variability.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ru Chen, ruchen@alum.mit.edu
Save
  • Barth, J. A., S. D. Pierce, and T. J. Cowles, 2005: Mesoscale structure and its seasonal evolution in the northern California Current System. Deep-Sea Res. II, 52, 528, https://doi.org/10.1016/j.dsr2.2004.09.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, J., and Coauthors, 2009: Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar. Geod., 32, 355371, https://doi.org/10.1080/01490410903297766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bograd, S. J., D. A. Checkley Jr., and W. S. Wooster, 2003: CalCOFI: A half century of physical, chemical, and biological research in the California Current System. Deep Sea Res. II, 50, 23492353, https://doi.org/10.1016/S0967-0645(03)00122-X.

    • Search Google Scholar
    • Export Citation
  • Bray, N., A. Keyes, and W. Morawitz, 1999: The California current system in the Southern California Bight and the Santa Barbara Channel. J. Geophys. Res. Oceans, 104, 76957714, https://doi.org/10.1029/1998JC900038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., P. Marchesiello, and J. McWilliams, 2004: Upwelling response to coastal wind profiles. Geophys. Res. Lett., 31, L13311, https://doi.org/10.1029/2004GL020123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943, https://doi.org/10.1175/2007JPO3671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Checkley, J. D. M., and J. A. Barth, 2009: Patterns and processes in the California Current System. Prog. Oceanogr., 83, 4964, https://doi.org/10.1016/j.pocean.2009.07.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., 1982: Large-scale response of the California current to forcing by the wind stress curl. CalCOFI Rep., Vol. 23, 30–148, https://www.calcofi.org/publications/calcofireports/v23/CalCOFI_Rpt_Vol_23_1982.pdf.

  • Chelton, D. B., 1984: Seasonal variability of alongshore geostrophic velocity off central California. J. Geophys. Res., 89, 34733486, https://doi.org/10.1029/JC089iC03p03473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, R., A. F. Thompson, and G. R. Flierl, 2016: Time-dependent eddy-mean energy diagrams and their application to the ocean. J. Phys. Oceanogr., 46, 28272850, https://doi.org/10.1175/JPO-D-16-0012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chenillat, F., P. J. Franks, X. Capet, P. Rivière, N. Grima, B. Blanke, and V. Combes, 2018: Eddy properties in the Southern California Current System. Ocean Dyn., 68, 761777, https://doi.org/10.1007/s10236-018-1158-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colas, F., X. Capet, J. C. McWilliams, and Z. Li, 2013: Mesoscale eddy buoyancy flux and eddy-induced circulation in eastern boundary currents. J. Phys. Oceanogr., 43, 10731095, https://doi.org/10.1175/JPO-D-11-0241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, C., R. Paquette, and S. Ramp, 1996: Annual variability of ocean currents at 350-m depth over the continental slope off Point Sur, California. CalCOFI Rep., Vol. 37, 257–263, http://www.calcofi.org/publications/calcofireports/v37/Vol_37_Collins_etal.pdf.

  • Collins, C. A., L. M. Ivanov, O. V. Melnichenko, and N. Garfield, 2004: California Undercurrent variability and eddy transport estimated from RAFOS float observations. J. Geophys. Res., 109, C05028, https://doi.org/10.1029/2003JC002191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, C. A., T. Margolina, T. A. Rago, and L. Ivanov, 2013: Looping RAFOS floats in the California Current System. Deep-Sea Res. II, 85, 4261, https://doi.org/10.1016/j.dsr2.2012.07.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Connolly, T. P., B. M. Hickey, I. Shulman, and R. E. Thomson, 2014: Coastal trapped waves, alongshore pressure gradients, and the California Undercurrent. J. Phys. Oceanogr., 44, 319342, https://doi.org/10.1175/JPO-D-13-095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cornuelle, B., T. Chereskin, P. Niiler, M. Morris, and D. Musgrave, 2000: Observations and modeling of a California Undercurrent eddy. J. Geophys. Res., 105, 12271243, https://doi.org/10.1029/1999JC900284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., J. C. McWilliams, and P. R. Gent, 1994: The role of mesoscale tracer transports in the global ocean circulation. Science, 264, 11231126, https://doi.org/10.1126/science.264.5162.1123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duran, R., 2019: Kinematics and dynamics of a model eastern-boundary poleward undercurrent. Ph.D. thesis, Oregon State University, 179 pp.

  • Ferreira, D., J. Marshall, and P. Heimbach, 2005: Estimating eddy stresses by fitting dynamics to observations using a residual-mean ocean circulation model and its adjoint. J. Phys. Oceanogr., 35, 18911910, https://doi.org/10.1175/JPO2785.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frischknecht, M., M. Münnich, and N. Gruber, 2015: Remote versus local influence of ENSO on the California Current System. J. Geophys. Res. Oceans, 120, 13531374, https://doi.org/10.1002/2014JC010531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfield, N., C. A. Collins, R. G. Paquette, and E. Carter, 1999: Lagrangian exploration of the California Undercurrent, 1992–95. J. Phys. Oceanogr., 29, 560583, https://doi.org/10.1175/1520-0485(1999)029<0560:LEOTCU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gay, P. S., and T. K. Chereskin, 2009: Mean structure and seasonal variability of the poleward undercurrent off Southern California. J. Geophys. Res., 114, C02007, https://doi.org/10.1029/2008JC004886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gómez-Valdivia, F., A. Parés-Sierra, and A. L. Flores-Morales, 2017: Semiannual variability of the California Undercurrent along the Southern California Current System: A tropical generated phenomenon. J. Geophys. Res. Oceans, 122, 15741589, https://doi.org/10.1002/2016JC012350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., 1998: Exploring the relationship between eddy-induced transport velocity, vertical momentum transfer, and the isopycnal flux of potential vorticity. J. Phys. Oceanogr., 28, 422432, https://doi.org/10.1175/1520-0485(1998)028<0422:ETRBEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halo, I., P. Penven, B. Backeberg, I. Ansorge, F. Shillington, and R. Roman, 2014: Mesoscale eddy variability in the southern extension of the East Madagascar Current: Seasonal cycle, energy conversion terms, and eddy mean properties. J. Geophys. Res. Oceans, 119, 73247356, https://doi.org/10.1002/2014JC009820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hickey, B. M., 1979: The California Current System-hypotheses and facts. Prog. Oceanogr., 8, 191279, https://doi.org/10.1016/0079-6611(79)90002-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hickey, B. M., and N. E. Pola, 1983: The seasonal alongshore pressure gradient on the west coast of the United States. J. Geophys. Res., 88, 76237633, https://doi.org/10.1029/JC088iC12p07623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, A. E., B. M. Hickey, F. A. Shillington, P. T. Strub, K. H. Brink, E. D. Barton, and A. C. Thomas, 1998: Eastern ocean boundaries. The Global Coastal Ocean: Regional Studies and Syntheses, A. R. Robinson and K. H. Brink, Eds., The Sea—Ideas and Observations on Progress in the Study of the Seas, Vol. 11, John Wiley and Sons, 29–67.

  • Holloway, G., 1987: Systematic forcing of large-scale geophysical flows by eddy-topography interaction. J. Fluid Mech., 184, 463476, https://doi.org/10.1017/S0022112087002970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, G., 1992: Representing topographic stress for large-scale ocean models. J. Phys. Oceanogr., 22, 10331046, https://doi.org/10.1175/1520-0485(1992)022<1033:RTSFLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, G., 1996: Neptune effect: Statistical mechanical forcing of ocean circulation. Stochastic Modelling in Physical Oceanography, Springer, 207–219.

    • Crossref
    • Export Citation
  • Holloway, G., and Z. Wang, 2009: Representing eddy stress in an Arctic Ocean model. J. Geophys. Res. Oceans, 114, C06020, https://doi.org/10.1029/2008JC005169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurlburt, H., and J. D. Thompson, 1973: Coastal upwelling on a β-plane. J. Phys. Oceanogr., 3, 1632, https://doi.org/10.1175/1520-0485(1973)003<0016:CUOAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., 2018: Nonpropagating form drag and turbulence due to stratified flow over large-scale abyssal hill topography. J. Phys. Oceanogr., 48, 23832395, https://doi.org/10.1175/JPO-D-17-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynn, R. J., and J. J. Simpson, 1987: The California Current System: The seasonal variability of its physical characteristics. J. Geophys. Res., 92, 12 94712 966, https://doi.org/10.1029/JC092iC12p12947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacCready, P., G. Pawlak, K. Edwards, and R. McCabe, 2003: Form drag on ocean flows. Near Boundary Processes and Their Parameterization: Proc. 13th’Aha Huliko’a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 119–130.

  • Maltrud, M., and G. Holloway, 2008: Implementing biharmonic Neptune in a global eddying ocean model. Ocean Modell., 21, 2234, https://doi.org/10.1016/j.ocemod.2007.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., J. C. McWilliams, and A. Shchepetkin, 2003: Equilibrium structure and dynamics of the California Current system. J. Phys. Oceanogr., 33, 753783, https://doi.org/10.1175/1520-0485(2003)33<753:ESADOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, R. M., P. MacCready, and G. Pawlak, 2006: Form drag due to flow separation at a headland. J. Phys. Oceanogr., 36, 21362152, https://doi.org/10.1175/JPO2966.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., 1981: A linear stratified ocean model of the coastal undercurrent. Philos. Trans. Roy. Soc. London, 302A, 385413, https://doi.org/10.1098/rsta.1981.0176.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., P. K. Kundu, and S.-Y. Chao, 1987: On the dynamics of the California Current System. J. Mar. Res., 45, 132, https://doi.org/10.1357/002224087788400945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., W. R. Holland, and J. H. Chow, 1978: A description of numerical Antarctic Circumpolar Currents. Dyn. Atmos. Oceans, 2, 213291, https://doi.org/10.1016/0377-0265(78)90018-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinvielle, M., and G. C. Johnson, 2013: Decadal water-property trends in the California Undercurrent, with implications for ocean acidification. J. Geophys. Res. Oceans, 118, 66876703, https://doi.org/10.1002/2013JC009299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and W. K. Dewar, 2015: Submesoscale instability and generation of mesoscale anticyclones near a separation of the California Undercurrent. J. Phys. Oceanogr., 45, 613629, https://doi.org/10.1175/JPO-D-13-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., A. G. Nurser, R. B. Scott, and J. A. Goff, 2013: The impact of small-scale topography on the dynamical balance of the ocean. J. Phys. Oceanogr., 43, 647668, https://doi.org/10.1175/JPO-D-12-056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penduff, T., B. Barnier, M.-A. Kerbiriou, and J. Verron, 2002: How topographic smoothing contributes to differences between the eddy flows simulated by sigma-and geopotential-coordinate models. J. Phys. Oceanogr., 32, 122137, https://doi.org/10.1175/1520-0485(2002)032<0122:HTSCTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, S., R. Smith, P. Kosro, J. Barth, and C. Wilson, 2000: Continuity of the poleward undercurrent along the eastern boundary of the mid-latitude north Pacific. Deep-Sea Res. II, 47, 811829, https://doi.org/10.1016/S0967-0645(99)00128-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, J., 1962: Measurements of the California Countercurrent at a depth of 250 meters. J. Mar. Res., 20, 134137.

  • Renault, L., C. Deutsch, J. C. McWilliams, H. Frenzel, J.-H. Liang, and F. Colas, 2016a: Partial decoupling of primary productivity from upwelling in the California Current system. Nat. Geosci., 9, 505508, https://doi.org/10.1038/ngeo2722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renault, L., A. Hall, and J. C. McWilliams, 2016b: Orographic shaping of US West Coast wind profiles during the upwelling season. Climate Dyn., 46, 273289, https://doi.org/10.1007/s00382-015-2583-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renault, L., M. J. Molemaker, J. C. McWilliams, A. F. Shchepetkin, F. Lemarié, D. Chelton, S. Illig, and A. Hall, 2016c: Modulation of wind work by oceanic current interaction with the atmosphere. J. Phys. Oceanogr., 46, 16851704, https://doi.org/10.1175/JPO-D-15-0232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renault, L., S. Masson, T. Arsouze, G. Madec, and J. C. McWilliams, 2020: Recipes for how to force oceanic model dynamics. J. Adv. Model. Earth Syst., 12, e2019MS001715, https://doi.org/10.1029/2019MS001715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renault, L., J. C. McWilliams, F. Kessouri, A. Jousse, H. Frenzel, R. Chen, and C. Deutsch, 2021: Evaluation of high-resolution atmospheric and oceanic simulations of the California Current System. Prog. Oceanogr., 195, 102564, https://doi.org/10.1016/j.pocean.2021.102564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salmon, R., 1998: Linear ocean circulation theory with realistic bathymetry. J. Mar. Res., 56, 833884, https://doi.org/10.1357/002224098321667396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samelson, R., 2017: Time-dependent linear theory for the generation of poleward undercurrents on eastern boundaries. J. Phys. Oceanogr., 47, 30373059, https://doi.org/10.1175/JPO-D-17-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2009: Correction and commentary for “Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system” by Haidvogel et al., J. Comp. Phys. 227, pp. 3595–3624. J. Comput. Phys., 228, 89859000, https://doi.org/10.1016/j.jcp.2009.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Stewart, A., and A. Thompson, 2016: Eddy generation and jet formation via dense water outflows across the Antarctic continental slope. J. Phys. Oceanogr., 46, 37293750, https://doi.org/10.1175/JPO-D-16-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storch, J.-S., C. Eden, I. Fast, H. Haak, D. Hernández-Deckers, E. Maier-Reimer, J. Marotzke, and D. Stammer, 2012: An estimate of the Lorenz energy cycle for the world ocean based on the STORM/NCEP simulation. J. Phys. Oceanogr., 42, 21852205, https://doi.org/10.1175/JPO-D-12-079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, R. E., and M. V. Krassovski, 2010: Poleward reach of the California Undercurrent extension. J. Geophys. Res., 115, C09027, https://doi.org/10.1029/2010JC006280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, R. E., and M. V. Krassovski, 2015: Remote alongshore winds drive variability of the California Undercurrent off the British Columbia-Washington coast. J. Geophys. Res. Oceans, 120, 81518176, https://doi.org/10.1002/2015JC011306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todd, R. E., D. L. Rudnick, R. E. Davis, and M. D. Ohman, 2011: Underwater gliders reveal rapid arrival of El Niño effects off California’s coast. Geophys. Res. Lett., 38, L03609, https://doi.org/10.1029/2010GL046376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tréguier, A.-M., and J. McWilliams, 1990: Topographic influences on wind-driven, stratified flow in a β-plane channel: An idealized model for the Antarctic Circumpolar Current. J. Phys. Oceanogr., 20, 321343, https://doi.org/10.1175/1520-0485(1990)020<0321:TIOWDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsuchiya, M., 1980: Inshore circulation in the southern California Bight, 1974–1977. Deep-Sea Res., 27A, 99118, https://doi.org/10.1016/0198-0149(80)90090-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2016: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

  • Wang, Y., and A. L. Stewart, 2018: Eddy dynamics over continental slopes under retrograde winds: Insights from a model inter-comparison. Ocean Modell., 121, 118, https://doi.org/10.1016/j.ocemod.2017.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ward, M. L., and A. M. Hogg, 2011: Establishment of momentum balance by form stress in a wind-driven channel. Ocean Modell., 40, 133146, https://doi.org/10.1016/j.ocemod.2011.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Werner, F. E., and B. M. Hickey, 1983: The role of alongshore pressure gradient in Pacific Northwest coastal dynamics. J. Phys. Oceanogr., 13, 395410, https://doi.org/10.1175/1520-0485(1983)013<0395:TROALP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolff, J.-O., E. Maier-Reimer, and D. J. Olbers, 1991: Wind-driven flow over topography in a zonal β-plane channel: A quasi-geostrophic model of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 21, 236264, https://doi.org/10.1175/1520-0485(1991)021<0236:WDFOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wooster, W. S., 1970: California undercurrent off northern Baja California. J. Mar. Res., 28, 235250.

  • Wunsch, C., 1998: The work done by the wind on the oceanic general circulation. J. Phys. Oceanogr., 28, 23322340, https://doi.org/10.1175/1520-0485(1998)028<2332:TWDBTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, X., and D. P. Marshall, 2013: Vertical eddy energy fluxes in the North Atlantic subtropical and subpolar gyres. J. Phys. Oceanogr., 43, 95103, https://doi.org/10.1175/JPO-D-12-021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, P., A. C. Subramanian, F. Yao, A. R. Kartadikaria, D. Guo, and I. Hoteit, 2016: The eddy kinetic energy budget in the Red Sea. J. Geophys. Res. Oceans, 121, 47324747, https://doi.org/10.1002/2015JC011589.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 450 0 0
Full Text Views 2232 1628 101
PDF Downloads 758 203 24