Coherent Velocity Structures in the Mixed Layer: Characteristics, Energetics, and Turbulent Kinetic Energy Budget

Ewa Jarosz aU.S. Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by Ewa Jarosz in
Current site
Google Scholar
PubMed
Close
,
Hemantha W. Wijesekera aU.S. Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by Hemantha W. Wijesekera in
Current site
Google Scholar
PubMed
Close
, and
David W. Wang aU.S. Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by David W. Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Velocity, hydrographic, and microstructure observations collected under moderate to high winds, large surface waves, and significant ocean-surface heat losses were utilized to examine coherent velocity structures (CVS) and turbulent kinetic energy (TKE) budget in the mixed layer on the outer shelf in the northern Gulf of Mexico in February 2017. The CVS exhibited larger downward velocities in downwelling regions and weaker upward velocities in broader upwelling regions, elevated vertical velocity variance, vertical velocity maxima in the upper part of the mixed layer, and phasing of crosswind velocities relative to vertical velocities near the base of the mixed layer. Temporal scales ranged from 10 to 40 min, and estimated lateral scales ranged from 90 to 430 m, which were 1.5–6 times as large as the mixed layer depth. Nondimensional parameters, Langmuir and Hoenikker numbers, indicated that plausible forcing mechanisms were surface-wave-driven Langmuir vortex and destabilizing surface buoyancy flux. The rate of change of TKE, shear production, Stokes production, buoyancy production, vertical transport of TKE, and dissipation in the TKE budget were evaluated. The shear and Stokes productions, dissipation, and vertical transport of TKE were the dominant terms. The buoyancy production term was important at the sea surface, but it decreased rapidly in the interior. A large imbalance term was found under the unstable, high-wind, and high–sea state conditions. The cause of this imbalance cannot be determined with certainty through analyses of the available observations; however, our speculation is that the pressure transport is significant under these conditions.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ewa.Jarosz@nrlssc.navy.mil

Abstract

Velocity, hydrographic, and microstructure observations collected under moderate to high winds, large surface waves, and significant ocean-surface heat losses were utilized to examine coherent velocity structures (CVS) and turbulent kinetic energy (TKE) budget in the mixed layer on the outer shelf in the northern Gulf of Mexico in February 2017. The CVS exhibited larger downward velocities in downwelling regions and weaker upward velocities in broader upwelling regions, elevated vertical velocity variance, vertical velocity maxima in the upper part of the mixed layer, and phasing of crosswind velocities relative to vertical velocities near the base of the mixed layer. Temporal scales ranged from 10 to 40 min, and estimated lateral scales ranged from 90 to 430 m, which were 1.5–6 times as large as the mixed layer depth. Nondimensional parameters, Langmuir and Hoenikker numbers, indicated that plausible forcing mechanisms were surface-wave-driven Langmuir vortex and destabilizing surface buoyancy flux. The rate of change of TKE, shear production, Stokes production, buoyancy production, vertical transport of TKE, and dissipation in the TKE budget were evaluated. The shear and Stokes productions, dissipation, and vertical transport of TKE were the dominant terms. The buoyancy production term was important at the sea surface, but it decreased rapidly in the interior. A large imbalance term was found under the unstable, high-wind, and high–sea state conditions. The cause of this imbalance cannot be determined with certainty through analyses of the available observations; however, our speculation is that the pressure transport is significant under these conditions.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ewa.Jarosz@nrlssc.navy.mil
Save
  • Agrawal, Y. C., E. A. Terray, M. A. Donelan, P. A. Hwang, A. J. Williams III, W. M. Drennan, K. K. Kahma, and S. A. Kitaigorodskii, 1992: Enhanced dissipation of kinetic energy beneath surface waves. Nature, 359, 219220, https://doi.org/10.1038/359219a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anis, A., and J. N. Moum, 1995: Surface wave–turbulence interactions: Scaling ε(z) near the sea surface. J. Phys. Oceanogr., 25, 20252045, https://doi.org/10.1175/1520-0485(1995)025<2025:SWISNT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., and Coauthors, 2012: A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett., 39, L18605, https://doi.org/10.1029/2012GL052932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., and S. Van Gorder, 2018: The relationship of near-surface flow, Stokes drift, and the wind stress. J. Geophys. Res. Oceans, 123, 46804692, https://doi.org/10.1029/2018JC014102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craik, A. D. D., and S. Leibovich, 1976: A rational model for Langmuir circulations. J. Fluid Mech., 73, 401426, https://doi.org/10.1017/S0022112076001420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2001: Turbulent vertical kinetic energy in the ocean mixed layer. J. Phys. Oceanogr., 31, 35303537, https://doi.org/10.1175/1520-0485(2002)031<3530:TVKEIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., J. Thomson, A. Y. Shcherbina, R. R. Harcourt, M. F. Cronin, M. A. Hemer, and B. Fox-Kemper, 2014: Quantifying upper ocean turbulence driven by surface waves. Geophys. Res. Lett., 41, 102107, https://doi.org/10.1002/2013GL058193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dillon, T. M., J. G. Richman, C. G. Hansen, and M. D. Pearson, 1981: Near-surface turbulence measurements in a lake. Nature, 290, 390392, https://doi.org/10.1038/290390a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiMego, G. J., L. F. Bosart, and G. W. Endersen, 1976: An examination of the frequency and mean conditions surrounding frontal incursions into the Gulf of Mexico and Caribbean. Mon. Wea. Rev., 104, 709718, https://doi.org/10.1175/1520-0493(1976)104<0709:AEOTFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglas, W., and R. Lueck, 2015: ODAS MATLAB Library technical manual, version 4. Rockland Scientific International, Inc., 167 pp., http://rocklandscientific.com.

  • Fan, Y., E. Jarosz, Z. Yu, W. E. Rogers, T. G. Jensen, and J.-H. Liang, 2018: Langmuir turbulence in horizontal salinity gradient. Ocean Modell., 129, 93103, https://doi.org/10.1016/j.ocemod.2018.07.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fer, I., A. K. Petersonm, and J. E. Ullgren, 2014: Microstructure measurements from an underwater glider in the turbulent Faroe Bank channel overflow. J. Atmos. Oceanic Technol., 31, 11281150, https://doi.org/10.1175/JTECH-D-13-00221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., A. E. Tejada-Martinez, and C. E. Grosch, 2009: Measuring turbulent large-eddy structures with ADCP. Part 2. Horizontal velocity variance. J. Mar. Res., 67, 569595, https://doi.org/10.1357/002224009791218823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gargett, A. G., and J. R. Wells, 2007: Langmuir turbulence in shallow water. Part 1. Observations. J. Fluid Mech., 576, 2761, https://doi.org/10.1017/S0022112006004575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gargett, A. G., and C. E. Grosch, 2014: Turbulence process domination under the combined forcing of wind stress, the Langmuir vortex force, and surface cooling. J. Phys. Oceanogr., 44, 4467, https://doi.org/10.1175/JPO-D-13-021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gargett, A. G., D. K. Savidge, and J. R. Wells, 2014: Anatomy of a Langmuir supercell event. J. Mar. Res., 72, 127163, https://doi.org/10.1357/002224014814901976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerbi, G. P., J. H. Trowbridge, E. A. Terray, A. J. Plueddemann, and T. Kukulka, 2009: Observations of turbulence in the ocean surface boundary layer: Energetics and transport. J. Phys. Oceanogr., 39, 10771096, https://doi.org/10.1175/2008JPO4044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., and S. E. Belcher, 2009: Characteristics of Langmuir turbulence in the ocean mixed layer. J. Phys. Oceanogr., 39, 18711887, https://doi.org/10.1175/2009JPO4119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guerra, M., and J. Thomson, 2017: Turbulence measurements from five-beam acoustic Doppler current profilers. J. Atmos. Oceanic Technol., 34, 12671284, https://doi.org/10.1175/JTECH-D-16-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., and E. A. D’Asaro, 2008: Large-eddy simulation of Langmuir turbulence in pure seas. J. Phys. Oceanogr., 38, 15421562, https://doi.org/10.1175/2007JPO3842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Holtslag, A. A. M., and F. T. M. Nieuwstadt, 1986: Scaling the atmospheric boundary layer. Bound.-Layer Meteor., 36, 201209, https://doi.org/10.1007/BF00117468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, S. A., E. A. Meindl, and D. B. Gilhousen, 1994: Determining the power-law wind-profile exponent under near-neutral stability conditions at sea. J. Appl. Meteor., 33, 757765, https://doi.org/10.1175/1520-0450(1994)033<0757:DTPLWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2011: A note on the ocean surface roughness spectrum. J. Atmos. Oceanic Technol., 28, 436443, https://doi.org/10.1175/2010JTECHO812.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jonas, T., A. Stips, W. Eugster, and A. Wuest, 2003: Observations of a quasi shear-free lacustrine convective boundary layer: Stratification and its implications on turbulence. J. Geophys. Res., 108, 3328, https://doi.org/10.1029/2002JC001440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows. Oxford University Press, 289 pp.

    • Crossref
    • Export Citation
  • Kaimal, J. C., J. C. Wyngaard, D. A. Haugen, O. R. Coté, and Y. Izumi, 1976: Turbulence structure in the convective boundary layer. J. Atmos. Sci., 33, 21522169, https://doi.org/10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kenyon, K., 1969: Stokes drift for random gravity waves. J. Geophys. Res., 74, 69916994, https://doi.org/10.1029/JC074i028p06991.

  • Kukulka, T., A. J. Plueddemann, and P. P. Sullivan, 2012: Nonlocal transport due to Langmuir circulation in coastal ocean. J. Geophys. Res., 117, C12007, https://doi.org/10.1029/2012JC008340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langmuir, I., 1938: Surface motion of water induced by win. Science, 87, 119123, https://doi.org/10.1126/science.87.2250.119.

  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leibovich, S., 1977: On the evolution of the system of wind drift currents and Langmuir circulations in the ocean. Part 1. Theory and averaged current. J. Fluid Mech., 79, 715743, https://doi.org/10.1017/S002211207700041X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leibovich, S., and S. Paolucci, 1981: The instability of the ocean to Langmuir circulations. J. Fluid Mech., 102, 141167, https://doi.org/10.1017/S0022112081002589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., and C. Garrett, 1995: Is Langmuir circulation driven by surface waves or surface cooling? J. Phys. Oceanogr., 25, 6476, https://doi.org/10.1175/1520-0485(1995)025<0064:ILCDBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., C. Garrett, and E. D. Skyllingstad, 2005: A regime diagram for classifying turbulent large eddies in the upper ocean. Deep-Sea Res. I, 52, 259278, https://doi.org/10.1016/j.dsr.2004.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardo, C. P., and M. C. Gregg, 1989: Similarity scaling of viscous and thermal dissipation in a convecting surface boundary layer. J. Geophys. Res., 94, 62736284, https://doi.org/10.1029/JC094iC05p06273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, Y., and R. Lueck, 1999: Using a broadband ADCP in a tidal channel. Part II: Turbulence. J. Atmos. Oceanic Technol., 16, 15681579, https://doi.org/10.1175/1520-0426(1999)016<1568:UABAIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lueck, R. G., F. Wolk, and H. Yamazaki, 2002: Oceanic velocity microstructure measurements in the 20th century. J. Oceanogr., 58, 153174, https://doi.org/10.1023/A:1015837020019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marmorino, G. O., G. B. Smith, and G. J. Lindemann, 2005: Infrared imagery of large-aspect-ratio Langmuir circulation. Cont. Shelf Res., 25, 16, https://doi.org/10.1016/j.csr.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., P. Sullivan, and C. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130, https://doi.org/10.1017/S0022112096004375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., E. Huckle, and J.-H. Liang, 2012: The wavy Ekman layer: Langmuir circulation, breaking waves, and Reynolds stress. J. Phys. Oceanogr., 42, 17931816, https://doi.org/10.1175/JPO-D-12-07.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melville, W. K., 1996: The role of surface-wave breaking in air-sea interaction. Annu. Rev. Fluid Mech., 28, 279321, https://doi.org/10.1146/annurev.fl.28.010196.001431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, H. S., and Y. Noh, 2004: Influence of the surface heating on Langmuir circulation. J. Phys. Oceanogr., 34, 26302641, https://doi.org/10.1175/JPOJPO-2654.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C. H., and R. Rotunno, 1990: Vertical-velocity skewness in the buoyancy-driven boundary layer. J. Atmos. Sci., 47, 11491162, https://doi.org/10.1175/1520-0469(1990)047<1149:VVSITB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perkins, H., J. W. Book, F. de Strobel, L. Gualdesi, E. Jarosz, and W. J. Teague, 2009: The Barny Program: Fourteen years of NURC-NRL collaboration. NATO Undersea Research Centre Tech. Rep. NURC-SP-2009-001, 21 pp., https://apps.dtic.mil/sti/pdfs/AD1118198.pdf.

  • Polton, J. A., and S. E. Belcher, 2007: Langmuir turbulence and deeply penetrating jets in an unstratified mixed layer. J. Geophys. Res., 112, C09020, https://doi.org/10.1029/2007JC004205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rainville, L., and R. Pinkel, 2001: Wirewalker: An autonomous wave-powered vertical profiler. J. Atmos. Oceanic Technol., 18, 10481051, https://doi.org/10.1175/1520-0426(2001)018<1048:WAAWPV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scully, M. E., A. W. Fisher, S. E. Suttles, L. P. Sanford, and W. C. Boicourt, 2015: Characterization and modulation of Langmuir circulation in Chesapeake Bay. J. Phys. Oceanogr., 45, 26212639, https://doi.org/10.1175/JPO-D-14-0239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scully, M. E., J. H. Towbridge, and A. W. Fisher, 2016: Observations of the transfer of energy and momentum to the oceanic surface boundary layer beneath breaking waves. J. Phys. Oceanogr., 46, 18231837, https://doi.org/10.1175/JPO-D-15-0165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, T. J., and M. C. Gregg, 1986: Convectively driven turbulent mixing in the upper ocean. J. Phys. Oceanogr., 16, 17771798, https://doi.org/10.1175/1520-0485(1986)016<1777:CDTMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., and D. W. Denbo, 1995: An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. J. Geophys. Res., 100, 85018522, https://doi.org/10.1029/94JC03202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. A., 1998: Evolution of Langmuir circulation during a storm. J. Geophys. Res., 103, 12 64912 668, https://doi.org/10.1029/97JC03611.

  • Smith, J. A., R. Pinkel, and R. A. Weller, 1987: Velocity structure in the mixed layer during MILDEX. J. Phys. Oceanogr., 17, 425439, https://doi.org/10.1175/1520-0485(1987)017<0425:VSITML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soloviev, A., 1990: Coherent structures at the ocean surface in convectively unstable conditions. Nature, 346, 157160, https://doi.org/10.1038/346157a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soloviev, A., and R. Lukas, 2003: Observation of wave enhanced turbulence in the near surface layer of the ocean during TOGA COARE. Deep-Sea Res. I, 50, 371395, https://doi.org/10.1016/S0967-0637(03)00004-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soloviev, A., and R. Lukas, 2014: The Near-Surface Layer of the Ocean: Structure, Dynamics, and Applications. 2nd ed. Springer, 552 pp.

  • Soloviev, A., N. V. Vershinsky, and V. A. Bezverchnii, 1988: Small-scale turbulence measurements in the thin surface layer of the ocean. Deep-Sea Res., 35, 18591874, https://doi.org/10.1016/0198-0149(88)90113-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steffen, E., and E. A. D’Asaro, 2002: Deep convection in the Labrador Sea as observed by Lagrangian floats. J. Phys. Oceanogr., 32, 475492, https://doi.org/10.1175/1520-0485(2002)032<0475:DCITLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strong, B., B. Brumley, E. A. Terray, and G. W. Stone, 2000: The performance of ADCP-derived directional wave spectra and comparison with other independent measurements. Proc. Oceans 2000 MTS/IEEE Conf. and Exhibition, Providence, RI, IEEE, 1195–1203.

  • Teague, W. J., H. W. Wijesekera, E. Jarosz, A. Lugo-Fernandez, and Z. R. Hallock, 2014: Wavelet analysis of near-inertial currents at the East Flower Garden Bank. Cont. Shelf Res., 88, 4760, https://doi.org/10.1016/j.csr.2014.06.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tennekes, H., and J. L. Lumley, 1972: A First Course in Turbulence. MIT Press, 300 pp.

    • Crossref
    • Export Citation
  • Terray, E. A., M. A. Donelan, Y. C. Agrawal, W. M. Drennan, K. K. Kahma, A. J. Williams III, P. A. Hwang, and S. A. Kitaigorodskii, 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26, 792807, https://doi.org/10.1175/1520-0485(1996)026<0792:EOKEDU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terray, E. A., B. H. Brumley, and B. Strong, 1999: Measuring waves and currents with an upward looking ADCP. Proc. IEEE 6th Working Conf. on Current Measurement, San Diego, CA, IEEE, 66–71, https://doi.org/10.1109/CCM.1999.755216.

    • Crossref
    • Export Citation
  • Thorpe, S. A., 2004: Langmuir circulation. Annu. Rev. Fluid Mech., 36, 5579, https://doi.org/10.1146/annurev.fluid.36.052203.071431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 2005: The Turbulent Ocean. Cambridge University Press, 439 pp.

    • Crossref
    • Export Citation
  • Thorpe, S. A., and A. J. Hall, 1982: Observations of the thermal structure of Langmuir circulation. J. Fluid Mech., 114, 237250, https://doi.org/10.1017/S0022112082000123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., U. Lemmin, C. Perrinjaquet, and I. Fer, 1999: Observations of the thermal structure of a lake using a submarine. Limnol. Oceanogr., 44, 15751582, https://doi.org/10.4319/lo.1999.44.6.1575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tseng, R.-S., and E. A. D’Asaro, 2004: Measurements of turbulent vertical kinetic energy in the ocean mixed layer from Lagrangian floats. J. Phys. Oceanogr., 34, 19841990, https://doi.org/10.1175/1520-0485(2004)034<1984:MOTVKE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Roekel, L. P., B. Fox-Kemper, P. P. Sullivan, P. E. Hamlington, and S. R. Haney, 2012: The form and orientation of Langmuir cells for misaligned winds and waves. J. Geophys. Res., 117, C05001, https://doi.org/10.1029/2011JC007516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, R., A. E. Tejada-Martiez, and C. E. Grosch, 2016: Large-eddy simulation of a coastal ocean under the combined effects of surface heat fluxes and full-depth Langmuir circulation. J. Phys. Oceanogr., 46, 24112436, https://doi.org/10.1175/JPO-D-15-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weller, R. A., and J. F. Price, 1988: Langmuir circulation within the oceanic mixed layer. Deep-Sea Res., 35A, 711747, https://doi.org/10.1016/0198-0149(88)90027-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weller, R. A., J. P. Dean, J. F. Price, E. A. Francis, J. Marra, and D. C. Boardman, 1985: Three-dimensional flow in the upper ocean. Science, 227, 15521556, https://doi.org/10.1126/science.227.4694.1552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijesekera, H. W., C. A. Paulson, and A. Huyer, 2001: Horizontal wave number spectra of temperature in the unstably stratified oceanic surface layer. J. Geophys. Res., 106, 16 92916 946, https://doi.org/10.1029/2000JC000624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijesekera, H. W., D. W. Wang, W. J. Teague, E. Jarosz, E. Rogers, D. B. Fribance, and J. N. Moum, 2013: Surface wave-effects on high-frequency currents over a shelf-edge bank. J. Phys. Oceanogr., 43, 16271647, https://doi.org/10.1175/JPO-D-12-0197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijesekera, H. W., D. W. Wang, E. Jarosz, W. J. Teague, W. S. Pegau, and J. N. Moun, 2017: Turbulent large-eddy momentum flux divergence during high-wind events. J. Phys. Oceanogr., 47, 14931517, https://doi.org/10.1175/JPO-D-16-0286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijesekera, H. W., D. W. Wang, and E. Jarosz, 2020: Dynamics of the diurnal warm layer: Surface jet, high-frequency internal waves, and mixing. J. Phys. Oceanogr., 50, 20532070, https://doi.org/10.1175/JPO-D-19-0285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolk, F., R. G. Lueck, and L. C. St. Laurent, 2009: Turbulence measurements from a glider. Proc. OCEANS ’09, Biloxi, MS, MTS/IEEE, 6 pp., https://doi.org/10.23919/OCEANS.2009.5422413.

    • Crossref
    • Export Citation
  • Wyngaard, J. C., and O. R. Coté, 1971: The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J. Atmos. Sci., 28, 190201, https://doi.org/10.1175/1520-0469(1971)028<0190:TBOTKE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshikawa, Y., Y. Baba, H. Mizutani, T. Kubo, and C. Shimoda, 2018: Observed features of Langmuir turbulence forced by misaligned wind and waves under destabilizing buoyancy flux. J. Phys. Oceanogr., 48, 27372759, https://doi.org/10.1175/JPO-D-18-0038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 279 0 0
Full Text Views 2213 1737 108
PDF Downloads 641 135 15