• Aiki, H., R. J. Greatbatch, and M. Claus, 2017: Towards a seamlessly diagnosable expression for the energy flux associated with both equatorial and mid-latitude waves. Prog. Earth Planet. Sci., 4, 11, https://doi.org/10.1186/s40645-017-0121-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ascani, F., E. Firing, J. P. McCreary, P. Brandt, and R. J. Greatbatch, 2015: The deep equatorial ocean circulation in wind-forced numerical solutions. J. Phys. Oceanogr., 45, 17091734, https://doi.org/10.1175/JPO-D-14-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ascani, F., E. Firing, P. Dutrieux, J. P. McCreary, and A. Ishida, 2010: Deep equatorial ocean circulation induced by a forced–dissipated Yanai beam. J. Phys. Oceanogr., 40, 11181142, https://doi.org/10.1175/2010JPO4356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Athie, G., and F. Marin, 2008: Cross-equatorial structure and temporal modulation of intraseasonal variability at the surface of the tropical Atlantic Ocean. J. Geophys. Res. Oceans, 113, C08020, https://doi.org/10.1029/2007JC004332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandt, P., F. A. Schott, C. Provost, A. Kartavtseff, V. Hormann, B. Bourlès, and J. Fischer, 2006: Circulation in the central equatorial Atlantic: Mean and intraseasonal to seasonal variability. Geophys. Res. Lett., 33, L07609, https://doi.org/10.1029/2005GL025498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandt, P., A. Funk, V. Hormann, M. Dengler, R. J. Greatbatch, and J. M. Toole, 2011: Interannual atmospheric variability forced by the deep equatorial Atlantic Ocean. Nature, 473, 497500, https://doi.org/10.1038/nature10013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunge, L., C. Provost, and A. Kartavtseff, 2007: Variability in horizontal current velocities in the central and eastern equatorial Atlantic in 2002. J. Geophys. Res., 112, C02014, https://doi.org/10.1029/2006JC003704.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., 1983: The reflection of equatorial waves from oceanic boundaries. J. Phys. Oceanogr., 13, 11931207, https://doi.org/10.1175/1520-0485(1983)013<1193:TROEWF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • d’Orgeville, M., B. L. Hua, and H. Sasaki, 2007: Equatorial deep jets triggered by a large vertical scale variability within the western boundary layer. J. Mar. Res., 65, 125, https://doi.org/10.1357/002224007780388720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Düing, W., and Coauthors, 1975: Meanders and long waves in the equatorial Atlantic. Nature, 257, 280284, https://doi.org/10.1038/257280a0.

  • Garzoli, S., 1987: Forced oscillations on the equatorial Atlantic basin during the seasonal response of the equatorial Atlantic program (1983–1984). J. Geophys. Res., 92, 50895100, https://doi.org/10.1029/JC092iC05p05089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., and Coauthors, 2018: Evidence for the maintenance of slowly varying equatorial currents by intraseasonal variability. Geophys. Res. Lett., 45, 19231929, https://doi.org/10.1002/2017GL076662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grodsky, S. A., J. A. Carton, C. Provost, J. Servain, J. A. Lorenzzetti, and M. J. McPhaden, 2005: Tropical instability waves at 0°N, 23°W in the Atlantic: A case study using pilot research moored array in the tropical Atlantic (Pirata) mooring data. J. Geophys. Res., 110, C08010, https://doi.org/10.1029/2005JC002941.

    • Search Google Scholar
    • Export Citation
  • Han, W., J. P. McCreary, D. L. T. Anderson, and A. J. Mariano, 1999: Dynamics of the eastern surface jets in the equatorial Indian Ocean. J. Phys. Oceanogr., 29, 21912209, https://doi.org/10.1175/1520-0485(1999)029<2191:DOTESJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., P. J. Webster, J.-L. Lin, W. Liu, R. Fu, D. Yuan, and A. Hu, 2008: Dynamics of intraseasonal sea level and thermocline variability in the equatorial Atlantic during 2002–03. J. Phys. Oceanogr., 38, 945967, https://doi.org/10.1175/2008JPO3854.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houghton, R. W., and C. Colin, 1987: Wind-driven meridional eddy heat flux in the gulf of guinea. J. Geophys. Res., 92, 10 77710 786, https://doi.org/10.1029/JC092iC10p10777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hua, B. L., M. D’Orgeville, M. D. Fruman, C. Menesguen, R. Schopp, P. Klein, and H. Sasaki, 2008: Destabilization of mixed Rossby gravity waves and the formation of equatorial zonal jets. J. Fluid Mech., 610, 311341, https://doi.org/10.1017/S0022112008002656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Illig, S., and M.-L. Bachèlery, 2019: Propagation of subseasonal equatorially-forced coastal trapped waves down to the Benguela upwelling system. Sci. Rep., 9, 5306, https://doi.org/10.1038/s41598-019-41847-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katz, E. J., 1997: Waves along the Equator in the Atlantic. J. Phys. Oceanogr., 27, 25362544, https://doi.org/10.1175/1520-0485(1997)027<2536:WATEIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kopte, R., P. Brandt, M. Claus, R. J. Greatbatch, and M. Dengler, 2018: Role of equatorial basin-mode resonance for the seasonal variability of the Angola current at 11°S. J. Phys. Oceanogr., 48, 261281, https://doi.org/10.1175/JPO-D-17-0111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., and H. Aiki, 2020: The life cycle of annual waves in the Indian Ocean as identified by seamless diagnosis of the energy flux. Geophys. Res. Lett., 47, e2019GL085670, https://doi.org/10.1029/2019GL085670.

    • Search Google Scholar
    • Export Citation
  • Lyman, J. M., D. B. Chelton, R. A. DeSzoeke, and R. M. Samelson, 2005: Tropical instability waves as a resonance between equatorial Rossby waves. J. Phys. Oceanogr., 35, 232254, https://doi.org/10.1175/JPO-2668.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J., 1985: Modeling equatorial ocean circulation. Annu. Rev. Fluid Mech., 17, 359409, https://doi.org/10.1146/annurev.fl.17.010185.002043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyama, T., J. P. McCreary Jr., D. Sengupta, and R. Senan, 2006: Dynamics of biweekly oscillations in the equatorial Indian Ocean. J. Phys. Oceanogr., 36, 827846, https://doi.org/10.1175/JPO2897.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perez, R. C., R. Lumpkin, W. E. Johns, G. R. Foltz, and V. Hormann, 2012: Interannual variations of Atlantic tropical instability waves. J. Geophys. Res., 117, C03011, https://doi.org/10.1029/2011JC007584.

    • Search Google Scholar
    • Export Citation
  • Philander, S., 1978: Forced oceanic waves. Rev. Geophys., 16, 1546, https://doi.org/10.1029/RG016i001p00015.

  • Polo, I., A. Lazar, B. Rodriguez-Fonseca, and S. Arnault, 2008: Oceanic kelvin waves and tropical Atlantic intraseasonal variability: 1. kelvin wave characterization. J. Geophys. Res., 113, C07009, https://doi.org/10.1029/2007JC004495.

    • Search Google Scholar
    • Export Citation
  • Richter, I., S. K. Behera, Y. Masumoto, B. Taguchi, N. Komori, and T. Yamagata, 2010: On the triggering of Benguela Niños: Remote equatorial versus local influences. Geophys. Res. Lett., 37, L20604, https://doi.org/10.1029/2010GL044461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., D. L. Anderson, and R. Smith, 1981: Beta-dispersion of low-frequency Rossby waves. Dyn. Atmos. Oceans, 5, 187214, https://doi.org/10.1016/0377-0265(81)90011-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shannon, L., A. Boyd, G. Brundrit, and J. Taunton-Clark, 1986: On the existence of an El Niño-type phenomenon in the Benguela system. J. Mar. Res., 44, 495520, https://doi.org/10.1357/002224086788403105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations: I. the basic experiment. Mon. Wea. Rev., 91, 99164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, Q., and H. Aiki, 2020: The climatological horizontal pattern of energy flux in the tropical Atlantic as identified by a unified diagnosis for Rossby and Kelvin waves. J. Geophys. Res. Oceans, 125, e2019JC015407, https://doi.org/10.1029/2019JC015407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toyoda, T., and Coauthors, 2021: Energy flow diagnosis of ENSO from an ocean reanalysis. J. Climate, 34, 40234042, https://doi.org/10.1175/JCLI-D-20-0704.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuchen, F. P., P. Brandt, M. Claus, and R. Hummels, 2018: Deep intraseasonal Variability in the central equatorial Atlantic. J. Phys. Oceanogr., 48, 28512865, https://doi.org/10.1175/JPO-D-18-0059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., 1984: Instability waves observed on the equator in the Atlantic Ocean during 1983. Geophys. Res. Lett., 11, 753756, https://doi.org/10.1029/GL011i008p00753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., and T. J. Weingartner, 1988: Instability waves in the equatorial Atlantic Ocean. J. Phys. Oceanogr., 18, 16411657, https://doi.org/10.1175/1520-0485(1988)018<1641:IWITEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Q., and K. P. Bowman, 2007: Interannual variations of tropical instability waves observed by the tropical rainfall measuring mission. Geophys. Res. Lett., 34, L09701, https://doi.org/10.1029/2007GL029719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Z., J. P. McCreary Jr., and J. A. Proehl, 1995: Meridional asymmetry and energetics of tropical instability waves. J. Phys. Oceanogr., 25, 29973007, https://doi.org/10.1175/1520-0485(1995)025<2997:MAAEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 87 87 31
Full Text Views 41 41 14
PDF Downloads 50 50 14

Horizontal Energy Flux of Wind-Driven Intraseasonal Waves in the Tropical Atlantic by a Unified Diagnosis

View More View Less
  • 1 a College of Oceanography, Hohai University, Nanjing, Jiangsu, China
  • | 2 b Institute for Earth-Space Environment Research, Nagoya University, Nagoya, Aichi, Japan
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Intraseasonal waves in the tropical Atlantic Ocean have been found to carry prominent energy that affects interannual variability of zonal currents. This study investigates energy transfer and interaction of wind-driven intraseasonal waves using single-layer model experiments. Three sets of wind stress forcing at intraseasonal periods of around 30, 50, and 80 days with a realistic horizontal distribution are employed separately to excite the second baroclinic mode in the tropical Atlantic. A unified scheme for calculating the energy flux, previously approximated and used for the diagnosis of annual Kelvin and Rossby waves, is utilized in the present study in its original form for intraseasonal waves. Zonal velocity anomalies by Kelvin waves dominate the 80-day scenario. Meridional velocity anomalies by Yanai waves dominate the 30-day scenario. In the 50-day scenario, the two waves have comparable magnitudes. The horizontal distribution of wave energy flux is revealed. In the 30- and 50-day scenarios, a zonally alternating distribution of cross-equatorial wave energy flux is found. By checking an analytical solution excluding Kelvin waves, we confirm that the cross-equatorial flux is caused by the meridional transport of geopotential at the equator. This is attributed to the combination of Kelvin and Yanai waves and leads to the asymmetric distribution of wave energy in the central basin. Coastally trapped Kelvin waves along the African coast are identified by alongshore energy flux. In the north, the bend of the Guinea coast leads the flux back to the equatorial basin. In the south, the Kelvin waves strengthened by local wind transfer the energy from the equatorial to Angolan regions.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Qingyang Song, qysong@hhu.edu.cn

Abstract

Intraseasonal waves in the tropical Atlantic Ocean have been found to carry prominent energy that affects interannual variability of zonal currents. This study investigates energy transfer and interaction of wind-driven intraseasonal waves using single-layer model experiments. Three sets of wind stress forcing at intraseasonal periods of around 30, 50, and 80 days with a realistic horizontal distribution are employed separately to excite the second baroclinic mode in the tropical Atlantic. A unified scheme for calculating the energy flux, previously approximated and used for the diagnosis of annual Kelvin and Rossby waves, is utilized in the present study in its original form for intraseasonal waves. Zonal velocity anomalies by Kelvin waves dominate the 80-day scenario. Meridional velocity anomalies by Yanai waves dominate the 30-day scenario. In the 50-day scenario, the two waves have comparable magnitudes. The horizontal distribution of wave energy flux is revealed. In the 30- and 50-day scenarios, a zonally alternating distribution of cross-equatorial wave energy flux is found. By checking an analytical solution excluding Kelvin waves, we confirm that the cross-equatorial flux is caused by the meridional transport of geopotential at the equator. This is attributed to the combination of Kelvin and Yanai waves and leads to the asymmetric distribution of wave energy in the central basin. Coastally trapped Kelvin waves along the African coast are identified by alongshore energy flux. In the north, the bend of the Guinea coast leads the flux back to the equatorial basin. In the south, the Kelvin waves strengthened by local wind transfer the energy from the equatorial to Angolan regions.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Qingyang Song, qysong@hhu.edu.cn
Save