• Abernathey, R., and P. Cessi, 2014: Topographic enhancement of eddy efficiency in baroclinic equilibration. J. Phys. Oceanogr., 44, 21072126, https://doi.org/10.1175/JPO-D-14-0014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abernathey, R., J. Marshall, and D. Ferreira, 2011: The dependence of Southern Ocean meridional overturning on wind stress. J. Phys. Oceanogr., 41, 22612278, https://doi.org/10.1175/JPO-D-11-023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adcroft, A., and Coauthors, 2019: The GFDL global ocean and sea ice model OM4.0: Model description and simulation features. J. Adv. Model. Earth Syst., 11, 31673211, https://doi.org/10.1029/2019MS001726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aguilar, D. A., and B. R. Sutherland, 2006: Internal wave generation from rough topography. Phys. Fluids, 18, 066603, https://doi.org/10.1063/1.2214538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, T. H., 1975: Topographically generated internal waves in the open ocean. J. Geophys. Res., 80, 320327, https://doi.org/10.1029/JC080i003p00320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, S. P., P. R. Gent, F. O. Bryan, A. F. Thompson, M. C. Long, and R. Abernathey, 2016: Southern Ocean overturning compensation in an eddy-resolving climate simulation. J. Phys. Oceanogr., 46, 15751592, https://doi.org/10.1175/JPO-D-15-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böning, C. W., A. Dispert, M. Visbeck, S. R. Rintoul, and F. U. Schwarzkopf, 2008: The response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci., 1, 864869, https://doi.org/10.1038/ngeo362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broadbridge, M. B., A. C. Naveira Garabato, and A. J. Nurser, 2016: Forcing of the overturning circulation across a circumpolar channel by internal wave breaking. J. Geophys. Res. Oceans, 121, 54365451, https://doi.org/10.1002/2015JC011597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., and J.-M. Beckers, 2011: Physical and Numerical Aspects. Vol. 101, Introduction to Geophysical Fluid Dynamics, Academic Press, 875 pp.

    • Crossref
    • Export Citation
  • de Lavergne, C., G. Madec, J. Le Sommer, A. J. G. Nurser, and A. C. Naveira Garabato, 2016: On the consumption of Antarctic Bottom Water in the abyssal ocean. J. Phys. Oceanogr., 46, 635661, https://doi.org/10.1175/JPO-D-14-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doddridge, E. W., J. Marshall, H. Song, J. M. Campin, M. Kelley, and L. Nazarenko, 2019: Eddy compensation dampens Southern Ocean sea surface temperature response to westerly wind trends. Geophys. Res. Lett., 46, 43654377, https://doi.org/10.1029/2019GL082758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohue, K. A., K. L. Tracey, D. R. Watts, M. P. Chidichimo, and T. K. Chereskin, 2016: Mean Antarctic Circumpolar Current transport measured in Drake Passage. Geophys. Res. Lett., 43, 11 76011 767, https://doi.org/10.1002/2016GL070319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufour, C. O., L. L. Sommer, J. D. Zika, M. Gehlen, J. C. Orr, P. Mathiot, and B. Barnier, 2012: Standing and transient eddies in the response of the Southern Ocean meridional overturning to the southern annular mode. J. Climate, 25, 69586974, https://doi.org/10.1175/JCLI-D-11-00309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farneti, R., and T. L. Delworth, 2010: The role of mesoscale eddies in the remote oceanic response to altered Southern Hemisphere winds. J. Phys. Oceanogr., 40, 23482354, https://doi.org/10.1175/2010JPO4480.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farneti, R., T. L. Delworth, A. J. Rosati, S. M. Griffies, and F. R. Zeng, 2010: The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change. J. Phys. Oceanogr., 40, 15391557, https://doi.org/10.1175/2010JPO4353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farneti, R., and Coauthors, 2015: An assessment of Antarctic Circumpolar Current and Southern Ocean meridional overturning circulation during 1958-2007 in a suite of interannual CORE-II simulations. Ocean Modell., 93, 84120, https://doi.org/10.1016/j.ocemod.2015.07.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frölicher, T. L., J. L. Sarmiento, D. J. Paynter, J. P. Dunne, J. P. Krasting, and M. Winton, 2015: Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J. Climate, 28, 862886, https://doi.org/10.1175/JCLI-D-14-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., 2016: Effects of Southern Hemisphere wind changes on the Meridional Overturning Circulation in ocean models. Annu. Rev. Mar. Sci., 8, 7994, https://doi.org/10.1146/annurev-marine-122414-033929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.

  • Gnanadesikan, A., 1999: A simple predictive model for the structure of the oceanic pycnocline. Science, 283, 20772079, https://doi.org/10.1126/science.283.5410.2077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goff, J. A., 2010: Global prediction of abyssal hill root-mean-square heights from small-scale altimetric gravity variability. J. Geophys. Res., 115, B12104, https://doi.org/10.1029/2010JB007867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goff, J. A., and T. H. Jordan, 1988: Stochastic modeling of seafloor morphology: Inversion of sea beam data for second-order statistics. J. Geophys. Res., 93, 13 58913 608, https://doi.org/10.1029/JB093iB11p13589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goff, J. A., and B. K. Arbic, 2010: Global prediction of abyssal hill roughness statistics for use in ocean models from digital maps of paleo-spreading rate, paleo-ridge orientation, and sediment thickness. Ocean Modell., 32, 3643, https://doi.org/10.1016/j.ocemod.2009.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gruber, N., P. Landschützer, and N. S. Lovenduski, 2019: The variable Southern Ocean carbon sink. Annu. Rev. Mar. Sci., 11, 159186, https://doi.org/10.1146/annurev-marine-121916-063407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallberg, R., and A. Gnanadesikan, 2006: The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr., 36, 22322252, https://doi.org/10.1175/JPO2980.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heywood, K. J., A. C. Naveira Garabato, and D. P. Stevens, 2002: High mixing rates in the abyssal Southern Ocean. Nature, 415, 10111014, https://doi.org/10.1038/4151011a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., 2010: An Antarctic Circumpolar Current driven by surface buoyancy forcing. Geophys. Res. Lett., 37, L23601, https://doi.org/10.1029/2010GL044777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., M. Meredith, J. R. Blundell, and C. Wilson, 2008: Eddy heat flux in the Southern Ocean: Response to variable wind forcing. J. Climate, 21, 608620, https://doi.org/10.1175/2007JCLI1925.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ito, T., and J. Marshall, 2008: Control of lower-limb overturning circulation in the Southern Ocean by diapycnal mixing and mesoscale eddy transfer. J. Phys. Oceanogr., 38, 28322845, https://doi.org/10.1175/2008JPO3878.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., 2009: The impact of abyssal mixing parameterizations in an ocean general circulation model. J. Phys. Oceanogr., 39, 17561775, https://doi.org/10.1175/2009JPO4085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, J. M., and Coauthors, 2016: Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nat. Climate Change, 6, 917926, https://doi.org/10.1038/nclimate3103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiss, A. E., and Coauthors, 2020: ACCESS-OM2 v1.0: A global ocean-sea ice model at three resolutions. Geosci. Model Dev., 13, 401442, https://doi.org/10.5194/gmd-13-401-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., D. Balwada, A. Naveira Garabato, and R. Abernathey, 2021: Parameterizing non-propagating form drag over rough bathymetry. J. Phys. Oceanogr., 51, 14891501, https://doi.org/10.1175/JPO-D-20-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., and R. C. Lien, 2019: Energy sinks for lee waves in shear flow. J. Phys. Oceanogr., 49, 28512865, https://doi.org/10.1175/JPO-D-19-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legg, S., 2020: Mixing by oceanic lee waves. Annu. Rev. Fluid Mech., 53, 173201, https://doi.org/10.1146/annurev-fluid-051220-043904.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., and A. M. Thurnherr, 2012: Eddy-modulated internal waves and mixing on a midocean ridge. J. Phys. Oceanogr., 42, 12421248, https://doi.org/10.1175/JPO-D-11-0126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and Coauthors, 2017: Climate process team on internal wave-driven ocean mixing. Bull. Amer. Meteor. Soc., 98, 24292454, https://doi.org/10.1175/BAMS-D-16-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic circumpolar current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354, https://doi.org/10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180, https://doi.org/10.1038/ngeo1391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, D. P., M. H. Ambaum, J. R. Maddison, D. R. Munday, and L. Novak, 2017: Eddy saturation and frictional control of the Antarctic Circumpolar Current. Geophys. Res. Lett., 44, 286292, https://doi.org/10.1002/2016GL071702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melet, A., R. Hallberg, S. Legg, and M. Nikurashin, 2014: Sensitivity of the ocean state to lee wave–driven mixing. J. Phys. Oceanogr., 44, 900921, https://doi.org/10.1175/JPO-D-13-072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., and A. M. Hogg, 2006: Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode. Geophys. Res. Lett., 33, L16608, https://doi.org/10.1029/2006GL026499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, A., B. M. Sloyan, K. L. Polzin, H. E. Phillips, and N. L. Bindoff, 2015: Mixing variability in the Southern Ocean. J. Phys. Oceanogr., 45, 966987, https://doi.org/10.1175/JPO-D-14-0110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, A., K. L. Polzin, B. M. Sloyan, and H. E. Phillips, 2016: Internal waves and mixing near the Kerguelen Plateau. J. Phys. Oceanogr., 46, 417437, https://doi.org/10.1175/JPO-D-15-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., and A. M. Hogg, 2013: On the relationship between Southern Ocean overturning and ACC transport. J. Phys. Oceanogr., 43, 140148, https://doi.org/10.1175/JPO-D-12-057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munday, D. R., H. L. Johnson, and D. P. Marshall, 2013: Eddy saturation of equilibrated circumpolar currents. J. Phys. Oceanogr., 43, 507532, https://doi.org/10.1175/JPO-D-12-095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., K. L. Polzin, B. A. King, K. J. Heywood, and M. Visbeck, 2004: Widespread intense turbulent mixing in the Southern Ocean. Science, 303, 210213, https://doi.org/10.1126/science.1090929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., A. J. G. Nurser, R. B. Scott, and J. A. Goff, 2013: The impact of small-scale topography on the dynamical balance of the ocean. J. Phys. Oceanogr., 43, 647668, https://doi.org/10.1175/JPO-D-12-056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2010a: Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Application to the Southern Ocean. J. Phys. Oceanogr., 40, 20252042, https://doi.org/10.1175/2010JPO4315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2010b: Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Theory. J. Phys. Oceanogr., 40, 10551074, https://doi.org/10.1175/2009JPO4199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2011: Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett., 38, L08610, https://doi.org/10.1029/2011GL046576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2013: Overturning circulation driven by breaking internal waves in the deep ocean. Geophys. Res. Lett., 40, 31333137, https://doi.org/10.1002/grl.50542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and G. Vallis, 2011: A theory of deep stratification and overturning circulation in the ocean. J. Phys. Oceanogr., 41, 485502, https://doi.org/10.1175/2010JPO4529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., G. K. Vallis, and A. Adcroft, 2013: Routes to energy dissipation for geostrophic flows in the Southern Ocean. Nat. Geosci., 6, 4851, https://doi.org/10.1038/ngeo1657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., R. Ferrari, N. Grisouard, and K. Polzin, 2014: The impact of finite-amplitude bottom topography on internal wave generation in the Southern Ocean. J. Phys. Oceanogr., 44, 29382950, https://doi.org/10.1175/JPO-D-13-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olbers, D., D. Borowski, C. V. Ö. Lker, and J.-O. W. Ö. Lff, 2004: The dynamical balance, transport and circulation of the Antarctic Circumpolar Current. Antarct. Sci., 16, 439470, https://doi.org/10.1017/S0954102004002251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 2013: Waves in the Ocean and Atmosphere: Introduction to Wave Dynamics. Springer, 272 pp.

  • Polzin, K. L., and E. Firing, 1997: Estimates of diapycnal mixing using LADCP and CTD data from I8S. International WOCE Newsletter, No. 29, WOCE International Project Office, Southampton, United Kingdom, 39–42.

  • Rintoul, S. R., 2018: The global influence of localized dynamics in the Southern Ocean. Nature, 558, 209218, https://doi.org/10.1038/s41586-018-0182-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., and A. C. Naveira Garabato, 2013: Dynamics of the Southern Ocean circulation. Ocean Circulation and Climate: A 21st Century Perspective, G. Siedler et al. Eds., International Geophysics Series, Vol. 103, Academic Press, 471–492, https://doi.org/10.1016/B978-0-12-391851-2.00018-0.

    • Crossref
    • Export Citation
  • Rintoul, S. R., C. Hughes, and D. Olbers, 2001: The Antarctic Circumpolar Current system. Ocean Circulation and Climate: Observing and Modelling the Global Ocean, G. Siedler, J. Church, and J. Gould, Eds., International Geophysics Series, Vol. 77, Academic Press, 271–302.

    • Crossref
    • Export Citation
  • Scott, R. B., J. A. Goff, A. C. Naveira Garabato, and A. J. Nurser, 2011: Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography. J. Geophys. Res., 116, C09029, https://doi.org/10.1029/2011JC007005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., N. P. Gillet, D. P. Stevens, G. J. Marshall, and H. K. Roscoe, 2009: The role of eddies in the Southern Ocean temperature response to the southern annular mode. J. Climate, 22, 806818, https://doi.org/10.1175/2008JCLI2416.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., 2020: Interdependence of internal tide and lee wave generation at abyssal hills: Global calculations. J. Phys. Oceanogr., 50, 655677, https://doi.org/10.1175/JPO-D-19-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheen, K. L., and Coauthors, 2013: Rates and mechanisms of turbulent dissipation and mixing in the Southern Ocean: Results from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). J. Geophys. Res. Oceans, 118, 27742792, https://doi.org/10.1002/jgrc.20217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheen, K. L., and Coauthors, 2014: Eddy-induced variability in Southern Ocean abyssal mixing on climatic timescales. Nat. Geosci., 7, 577582, https://doi.org/10.1038/ngeo2200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., S. R. Jayne, L. C. S. Laurent, and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6, 245263, https://doi.org/10.1016/S1463-5003(03)00011-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., and H. W. Wijesekera, 2004: Large-eddy simulation of flow over two-dimensional obstacles: High drag states and mixing. J. Phys. Oceanogr., 34, 94112, https://doi.org/10.1175/1520-0485(2004)034<0094:LSOFOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., 2005: Spatial variability of mixing in the Southern Ocean. Geophys. Res. Lett., 32, L18603, https://doi.org/10.1029/2005GL023568.

  • St. Laurent, L. C., H. L. Simmons, and S. R. Jayne, 2002: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29, 2106, https://doi.org/10.1029/2002GL015633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., A. C. Naveira Garabato, J. R. Ledwell, A. M. Thurnherr, J. M. Toole, and A. J. Watson, 2012: Turbulence and diapycnal mixing in Drake Passage. J. Phys. Oceanogr., 42, 21432152, https://doi.org/10.1175/JPO-D-12-027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stanley, G. J., and O. A. Saenko, 2014: Bottom-enhanced diapycnal mixing driven by mesoscale eddies: Sensitivity to wind energy supply. J. Phys. Oceanogr., 44, 6885, https://doi.org/10.1175/JPO-D-13-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2013: Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography, 26, 8097, https://doi.org/10.5670/oceanog.2013.07.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., and Coauthors, 2016: Changes in ocean heat, carbon content, and ventilation: A review of the first decade of GO-SHIP global repeat hydrography. Annu. Rev. Mar. Sci., 8, 185215, https://doi.org/10.1146/annurev-marine-052915-100829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1922: Diffusion by continuous movements. Proc. London Math. Soc., s2-20, 196212, https://doi.org/10.1112/plms/s2-20.1.196.

  • Thompson, A. F., and A. C. Naveira Garabato, 2014: Equilibration of the Antarctic Circumpolar Current by standing meanders. J. Phys. Oceanogr., 44, 18111828, https://doi.org/10.1175/JPO-D-13-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trossman, D. S., B. K. Arbic, S. T. Garner, J. A. Goff, S. R. Jayne, E. J. Metzger, and A. J. Wallcraft, 2013: Impact of parameterized lee wave drag on the energy budget of an eddying global ocean model. Ocean Modell., 72, 119142, https://doi.org/10.1016/j.ocemod.2013.08.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trossman, D. S., B. K. Arbic, J. G. Richman, S. T. Garner, S. R. Jayne, and A. J. Wallcraft, 2016: Impact of topographic internal lee wave drag on an eddying global ocean model. Ocean Modell., 97, 109128, https://doi.org/10.1016/j.ocemod.2015.10.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, S. J., P. Maccready, J. N. Moum, and J. D. Nash, 2013: Measurement of tidal form drag using seafloor pressure sensors. J. Phys. Oceanogr., 43, 11501172, https://doi.org/10.1175/JPO-D-12-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, https://doi.org/10.1175/JPO-D-13-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterman, S., A. C. Naveira Garabato, and K. L. Polzin, 2013: Internal waves and turbulence in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 43, 259282, https://doi.org/10.1175/JPO-D-11-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, A. J., J. R. Ledwell, M. J. Messias, B. A. King, N. Mackay, M. P. Meredith, B. Mills, and A. C. Naveira Garabato, 2013: Rapid cross-density ocean mixing at mid-depths in the Drake Passage measured by tracer release. Nature, 501, 408411, https://doi.org/10.1038/nature12432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., C. de Lavergne, A. C. Naveira Garabato, J. M. Klymak, J. A. MacKinnon, and K. L. Sheen, 2020: Internal wave-driven mixing: Governing processes and consequences for climate. Nat. Rev. Earth Environ., 1, 606621, https://doi.org/10.1038/s43017-020-0097-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijesekera, H. W., E. Jarosz, W. J. Teague, D. W. Wang, D. B. Fribance, J. N. Moum, and S. J. Warner, 2014: Measurements of form and frictional drags over a rough topographic bank. J. Phys. Oceanogr., 44, 24092432, https://doi.org/10.1175/JPO-D-13-0230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, C. J., R. B. Scott, P. Ailliot, and D. Furnival, 2014: Lee wave generation rates in the deep ocean. Geophys. Res. Lett., 41, 24342440, https://doi.org/10.1002/2013GL059087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., Z. Jing, S. Riser, and M. Visbeck, 2011: Seasonal and spatial variations of Southern Ocean diapycnal mixing from Argo profiling floats. Nat. Geosci., 4, 363366, https://doi.org/10.1038/ngeo1156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., M. Nikurashin, A. M. Hogg, and B. M. Sloyan, 2018: Energy loss from transient eddies due to lee wave generation in the Southern Ocean. J. Phys. Oceanogr., 48, 28672885, https://doi.org/10.1175/JPO-D-18-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, K., and M. Nikurashin, 2019: Downstream propagation and remote dissipation of internal waves in the Southern Ocean. J. Phys. Oceanogr., 49, 18731887, https://doi.org/10.1175/JPO-D-18-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 195 195 48
Full Text Views 89 89 7
PDF Downloads 111 111 9

The Impact of Lee Waves on the Southern Ocean Circulation

View More View Less
  • 1 a Institute for Marine and Antarctic Studies, and ARC Centre of Excellence for Climate System Science, University of Tasmania, Hobart, Tasmania, Australia
  • | 2 b Institute for Marine and Antarctic Studies, and ARC Centre of Excellence for Climate Extremes, Australian Antarctic Program Partnership, University of Tasmania, Hobart, Tasmania, Australia
  • | 3 c Research School of Earth Sciences, and ARC Centre of Excellence for Climate Extremes, Australian National University, Canberra, Australian Capital Territory, Australia
  • | 4 d Oceans and Atmosphere, CSIRO, and Center for Southern Hemisphere Ocean Research, Hobart, Tasmania, Australia
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Lee waves play an important role in transferring energy from the geostrophic eddy field to turbulent mixing in the Southern Ocean. As such, lee waves can impact the Southern Ocean circulation and modulate its response to changing climate through their regulation on the eddy field and turbulent mixing. The drag effect of lee waves on the eddy field and the mixing effect of lee waves on the tracer field have been studied separately to show their importance. However, it remains unclear how the drag and mixing effects act together to modify the Southern Ocean circulation. In this study, a lee-wave parameterization that includes both lee-wave drag and its associated lee-wave-driven mixing is developed and implemented in an eddy-resolving idealized model of the Southern Ocean to simulate and quantify the impacts of lee waves on the Southern Ocean circulation. The results show that lee waves enhance the baroclinic transport of the Antarctic Circumpolar Current (ACC) and strengthen the lower overturning circulation. The impact of lee waves on the large-scale circulation are explained by the control of lee-wave drag on isopycnal slopes through their effect on eddies, and by the control of lee-wave-driven mixing on deep stratification and water mass transformation. The results also show that the drag and mixing effects are coupled such that they act to weaken one another. The implication is that the future parameterization of lee waves in global ocean and climate models should take both drag and mixing effects into consideration for a more accurate representation of their impact on the ocean circulation.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Luwei Yang, luweiy@atmos.ucla.edu

Abstract

Lee waves play an important role in transferring energy from the geostrophic eddy field to turbulent mixing in the Southern Ocean. As such, lee waves can impact the Southern Ocean circulation and modulate its response to changing climate through their regulation on the eddy field and turbulent mixing. The drag effect of lee waves on the eddy field and the mixing effect of lee waves on the tracer field have been studied separately to show their importance. However, it remains unclear how the drag and mixing effects act together to modify the Southern Ocean circulation. In this study, a lee-wave parameterization that includes both lee-wave drag and its associated lee-wave-driven mixing is developed and implemented in an eddy-resolving idealized model of the Southern Ocean to simulate and quantify the impacts of lee waves on the Southern Ocean circulation. The results show that lee waves enhance the baroclinic transport of the Antarctic Circumpolar Current (ACC) and strengthen the lower overturning circulation. The impact of lee waves on the large-scale circulation are explained by the control of lee-wave drag on isopycnal slopes through their effect on eddies, and by the control of lee-wave-driven mixing on deep stratification and water mass transformation. The results also show that the drag and mixing effects are coupled such that they act to weaken one another. The implication is that the future parameterization of lee waves in global ocean and climate models should take both drag and mixing effects into consideration for a more accurate representation of their impact on the ocean circulation.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Luwei Yang, luweiy@atmos.ucla.edu
Save