• Alford, M. H., 2003: Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature, 423, 159162, https://doi.org/10.1038/nature01628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., S. T. Garner, R. W. Hallberg, and H. L. Simmons, 2004: The accuracy of surface elevations in forward global barotropic and baroclinic tide models. Deep-Sea Res. II, 51, 30693101, https://doi.org/10.1016/j.dsr2.2004.09.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., A. J. Wallcraft, and E. J. Metzger, 2010: Concurrent simulation of the eddying general circulation and tides in a global ocean model. Ocean Modell., 32, 175187, https://doi.org/10.1016/j.ocemod.2010.01.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., B. K. Arbic, J. G. Richman, J. F. Shriver, A. J. Wallcraft, and L. Zamudio, 2017: Semidiurnal internal tide incoherence in the equatorial Pacific. J. Geophys. Res. Oceans, 122, 52865305, https://doi.org/10.1002/2016JC012590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, A., Z. Guo, X. Lv, J. Song, and J. Zhang, 2017: Coherent and incoherent features, seasonal behaviors and spatial variations of internal tides in the northern South China Sea. J. Mar. Syst., 172, 7583, https://doi.org/10.1016/j.jmarsys.2017.03.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrere, L., and Coauthors, 2021: Accuracy assessment of global internal tide models using satellite altimetry. Ocean Sci., 17, 147180, https://doi.org/10.5194/os-17-147-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiswell, S. M., 2002: Energy levels, phase, and amplitude modulation of the baroclinic tide off Hawaii. J. Phys. Oceanogr., 32, 26402651, https://doi.org/10.1175/1520-0485-32.9.2640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colosi, J. A., and W. Munk, 2006: Tales of the venerable Honolulu tide gauge. J. Phys. Oceanogr., 36, 967996, https://doi.org/10.1175/JPO2876.1.

  • de Lavergne, C., and Coauthors, 2020: A parameterization of local and remote tidal mixing. J. Adv. Model. Earth Syst., 12, e2020MS002065, https://doi.org/10.1029/2020MS002065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doodson, A. T., 1921: The harmonic development of the tide-generating potential. Proc. Roy. Soc. Lond., 100A, 305329, https://doi.org/10.1098/rspa.1921.0088.

    • Search Google Scholar
    • Export Citation
  • Dushaw, B. D., 2015: An empirical model for mode-1 internal tides derived from satellite altimetry: Computing accurate tidal predictions at arbitrary points over the world oceans. University of Washington Applied Physics Laboratory Tech. Rep., 114 pp.

  • Egbert, G. D., and R. D. Ray, 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775778, https://doi.org/10.1038/35015531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falahat, S., J. Nycander, F. Roquet, and M. Zarroug, 2014: Global calculation of tidal energy conversion into vertical normal modes. J. Phys. Oceanogr., 44, 32253244, https://doi.org/10.1175/JPO-D-14-0002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., and C. Ubelmann, 2014: On the transition from profile altimeter to swath altimeter for observing global ocean surface topography. J. Atmos. Oceanic Technol., 31, 560568, https://doi.org/10.1175/JTECH-D-13-00109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., and E. Kunze, 2007: Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech., 39, 5787, https://doi.org/10.1146/annurev.fluid.39.050905.110227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerkema, T., F.-P. A. Lam, and L. R. Maas, 2004: Internal tides in the Bay of Biscay: Conversion rates and seasonal effects. Deep-Sea Res. II, 51, 29953008, https://doi.org/10.1016/j.dsr2.2004.09.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Hall, R. A., M. H. Alford, G. S. Carter, M. C. Gregg, R.-C. Lien, D. J. Wain, and Z. Zhao, 2014: Transition from partly standing to progressive internal tides in Monterey Submarine Canyon. Deep-Sea Res. II, 104, 164173, https://doi.org/10.1016/j.dsr2.2013.05.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jan, S., R.-C. Lien, and C.-H. Ting, 2008: Numerical study of baroclinic tides in Luzon Strait. J. Oceanogr., 64, 789802, https://doi.org/10.1007/s10872-008-0066-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and L. C. St. Laurent, 2001: Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett., 28, 811814, https://doi.org/10.1029/2000GL012044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeon, C., and Coauthors, 2014: Seasonal variation of semidiurnal internal tides in the East/Japan Sea. J. Geophys. Res. Oceans, 119, 28432859, https://doi.org/10.1002/2014JC009864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnston, T. M. S., M. A. Merrifield, and P. E. Holloway, 2003: Internal tide scattering at the Line Islands Ridge. J. Geophys. Res., 108, 3365, https://doi.org/10.1029/2003JC001844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., 2016: The vertical mode decomposition of surface and internal tides in the presence of a free surface and arbitrary topography. J. Phys. Oceanogr., 46, 37773788, https://doi.org/10.1175/JPO-D-16-0131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., N. L. Jones, G. N. Ivey, and R. J. Lowe, 2015: Internal-tide spectroscopy and prediction in the Timor Sea. J. Phys. Oceanogr., 45, 6483, https://doi.org/10.1175/JPO-D-14-0007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lahaye, N., J. Gula, and G. Roullet, 2019: Sea surface signature of internal tides. Geophys. Res. Lett., 46, 38803890, https://doi.org/10.1029/2018GL081848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., and J.-S. von Storch, 2020: M2 internal-tide generation in STORMTIDE2. J. Geophys. Res. Oceans, 125, e2019JC015453, https://doi.org/10.1029/2019JC015453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., J. Wang, and L.-L. Fu, 2019: An observing system simulation experiment for ocean state estimation to assess the performance of the SWOT mission: Part 1—A twin experiment. J. Geophys. Res. Oceans, 124, 48384855, https://doi.org/10.1029/2018JC014869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., Y. He, D. Wang, T. Liu, and S. Cai, 2015: Observed enhanced internal tides in winter near the Luzon Strait. J. Geophys. Res. Oceans, 120, 66376652, https://doi.org/10.1002/2015JC011131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, K., J. Sun, C. Guo, Y. Yang, W. Yu, and Z. Wei, 2019: Seasonal and spatial variations of the M2. J. Geophys. Res. Oceans, 124, 11151138, https://doi.org/10.1029/2018JC014819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Löb, J., J. Köhler, C. Mertens, M. Walter, Z. Li, J.-S. von Storch, Z. Zhao, and M. Rhein, 2020: Observations of the low-mode internal tide and its interaction with mesoscale flow south of the Azores. J. Geophys. Res. Oceans, 125, e2019JC015879, https://doi.org/10.1029/2019JC015879.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., and Coauthors, 2013: World Ocean Atlas 2013, Volume 1: Temperature. National Oceanographic Data Center, 40 pp., http://data.nodc.noaa.gov/woa/WOA13/DOC/woa13_vol1.pdf.

  • MacKinnon, J. A., and Coauthors, 2017: Climate process team on internal wave-driven ocean mixing. Bull. Amer. Meteor. Soc., 98, 24292454, https://doi.org/10.1175/BAMS-D-16-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchum, G. T., and S. M. Chiswell, 2000: Coherence of internal tide modulations along the Hawaiian Ridge. J. Geophys. Res., 105, 28 65328 661, https://doi.org/10.1029/2000JC900140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, M., J. Y. Cherniawsky, M. G. G. Foreman, and J.-S. von Storch, 2012: Global M2 internal tide and its seasonal variability from high resolution ocean circulation and tide modeling. Geophys. Res. Lett., 39, L19607, https://doi.org/10.1029/2012GL053320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1966: Abyssal recipes. Deep-Sea Res., 13, 707730, https://doi.org/10.1016/0011-7471(66)90602-4.

  • Munk, W. H., 1981: Internal waves and small-scale processes. Evolution of Physical Oceanography, B. A. Warren and C. Wunsch, Eds., MIT Press, 264–291.

  • Munk, W. H., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J., E. Shroyer, S. Kelly, M. Inall, T. Duda, M. Levine, N. Jones, and R. Musgrave, 2012: Are any coastal internal tides predictable? Oceanography, 25, 8095, https://doi.org/10.5670/oceanog.2012.44.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nycander, J., 2005: Generation of internal waves in the deep ocean by tides. J. Geophys. Res., 110, C10028, https://doi.org/10.1029/2004JC002487.

  • Osborne, J. J., A. L. Kurapov, G. D. Egbert, and P. M. Kosro, 2011: Spatial and temporal variability of the M2. J. Phys. Oceanogr., 41, 20372062, https://doi.org/10.1175/JPO-D-11-02.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, P. Klein, J. Wang, H. Torres, L.-L. Fu, and D. Menemenlis, 2018: Seasonality in transition scale from balanced to unbalanced motions in the world ocean. J. Phys. Oceanogr., 48, 591605, https://doi.org/10.1175/JPO-D-17-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., 2013: Precise comparisons of bottom-pressure and altimetric ocean tides. J. Geophys. Res. Oceans, 118, 45704584, https://doi.org/10.1002/jgrc.20336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and G. T. Mitchum, 1996: Surface manifestation of internal tides generated near Hawaii. Geophys. Res. Lett., 23, 21012104, https://doi.org/10.1029/96GL02050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and G. T. Mitchum, 1997: Surface manifestation of internal tides in the deep ocean: Observations from altimetry and island gauges. Prog. Oceanogr., 40, 135162, https://doi.org/10.1016/S0079-6611(97)00025-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and E. D. Zaron, 2011: Non-stationary internal tides observed with satellite altimetry. Geophys. Res. Lett., 38, L17609, https://doi.org/10.1029/2011GL048617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and E. Zaron, 2016: M2 internal tides and their observed wavenumber spectra from satellite altimetry. J. Phys. Oceanogr., 46, 322, https://doi.org/10.1175/JPO-D-15-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shang, X., Q. Liu, X. Xie, G. Chen, and R. Chen, 2015: Characteristics and seasonal variability of internal tides in the southern South China Sea. Deep-Sea Res. I, 98, 4352, https://doi.org/10.1016/j.dsr.2014.12.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., and D. T. Sandwell, 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 19561962, https://doi.org/10.1126/science.277.5334.1956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, P., and X. Chen, 2020: Investigation of the internal tides in the Northwest Pacific Ocean considering the background circulation and stratification. J. Phys. Oceanogr., 50, 31653188, https://doi.org/10.1175/JPO-D-19-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vic, C., and Coauthors, 2019: Deep-ocean mixing driven by small-scale internal tides. Nat. Commun., 10, 2099, https://doi.org/10.1038/s41467-019-10149-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vic, C., B. Ferron, V. Thierry, H. Mercier, and P. Lherminier, 2021: Tidal and near-inertial internal waves over the Reykjanes Ridge. J. Phys. Oceanogr., 51, 419437, https://doi.org/10.1175/JPO-D-20-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., L.-L. Fu, H. S. Torres, S. Chen, B. Qiu, and D. Menemenlis, 2019: On the spatial scales to be resolved by the surface water and ocean topography Ka-band radar interferometer. J. Atmos. Oceanic Technol., 36, 8799, https://doi.org/10.1175/JTECH-D-18-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., C. de Lavergne, A. C. Naveira Garabato, J. M. Klymak, J. A. MacKinnon, and K. L. Sheen, 2020: Internal wave-driven mixing: Governing processes and consequences for climate. Nat. Rev. Earth Environ., 1, 606621, https://doi.org/10.1038/s43017-020-0097-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1975: Internal tides in the ocean. Rev. Geophys. Space Phys., 13, 167182, https://doi.org/10.1029/RG013i001p00167.

  • Wunsch, C., 2013: Baroclinic motions and energetics as measured by altimeters. J. Atmos. Oceanic Technol., 30, 140150, https://doi.org/10.1175/JTECH-D-12-00035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, T., Y. Qi, Z. Jing, and S. Cai, 2020: Seasonal and spatial features of barotropic and baroclinic tides in the northwestern South China Sea. J. Geophys. Res. Oceans, 125, e2018JC014860, https://doi.org/10.1029/2018JC014860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., 2015: Nonstationary internal tides observed using dual-satellite altimetry. J. Phys. Oceanogr., 45, 22392246, https://doi.org/10.1175/JPO-D-15-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., 2017: Mapping the nonstationary internal tide with satellite altimetry. J. Geophys. Res. Oceans, 122, 539554, https://doi.org/10.1002/2016JC012487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., 2019: Baroclinic tidal sea level from exact-repeating mission altimetry. J. Phys. Oceanogr., 49, 193210, https://doi.org/10.1175/JPO-D-18-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., 2014: Internal tide radiation from the Luzon Strait. J. Geophys. Res. Oceans, 119, 54345448, https://doi.org/10.1002/2014JC010014.

  • Zhao, Z., 2016a: Internal tide oceanic tomography. Geophys. Res. Lett., 43, 91579164, https://doi.org/10.1002/2016GL070567.

  • Zhao, Z., 2016b: Using CryoSat-2 altimeter data to evaluate M2 internal tides observed from multisatellite altimetry. J. Geophys. Res. Oceans, 121, 51645180, https://doi.org/10.1002/2016JC011805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., 2017a: The global mode-1 S2 internal tide. J. Geophys. Res. Oceans, 122, 87948812, https://doi.org/10.1002/2017JC013112.

  • Zhao, Z., 2017b: Propagation of the semidiurnal internal tide: Phase velocity versus group velocity. Geophys. Res. Lett., 44, 11 94211 950, https://doi.org/10.1002/2017GL076008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., 2018: The global mode-2 M2 internal tide. J. Geophys. Res. Oceans, 123, 77257746, https://doi.org/10.1029/2018JC014475.

  • Zhao, Z., 2019: Mapping internal tides from satellite altimetry without blind directions. J. Geophys. Res. Oceans, 124, 86058625, https://doi.org/10.1029/2019JC015507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, R.-C. Lien, M. C. Gregg, and G. S. Carter, 2012: Internal tides and mixing in a submarine canyon with time-varying stratification. J. Phys. Oceanogr., 42, 21212142, https://doi.org/10.1175/JPO-D-12-045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, J. B. Girton, L. Rainville, and H. L. Simmons, 2016: Global observations of open-ocean mode-1 M2 internal tide. J. Phys. Oceanogr., 46, 16571684, https://doi.org/10.1175/JPO-D-15-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X.-H., D.-P. Wang, and D. Chen, 2015: Validating satellite altimeter measurements of internal tides with long-term TAO/TRITON buoy observations at 2°S–156°E. Geophys. Res. Lett., 42, 40404046, https://doi.org/10.1002/2015GL063669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zweng, M., and Coauthors, 2013: Salinity. Vol. 2, World Ocean Atlas 2013, NOAA Atlas NESDIS 74, 39 pp., https://www.ncei.noaa.gov/data/oceans/woa/WOA13/DOC/woa13_vol2.pdf.

All Time Past Year Past 30 Days
Abstract Views 509 509 51
Full Text Views 81 81 12
PDF Downloads 115 115 14

Seasonal Mode-1 M2 Internal Tides from Satellite Altimetry

View More View Less
  • 1 a Applied Physics Laboratory, University of Washington, Seattle, Washington
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The seasonal variability of mode-1 M2 internal tides is investigated using 25 years of multisatellite altimeter data from 1992 to 2017. Four seasonal internal tide models are constructed using seasonally subsetted altimeter data and World Ocean Atlas seasonal climatologies. This work is made possible by a newly developed mapping procedure that can significantly suppress model errors. Seasonal-mean and seasonally variable internal tide models are derived from the four seasonal models. All of the models are intercompared and evaluated using independent CryoSat-2 data. The seasonal-mean model is overall the best model because averaging the four seasonal models further reduces model errors. The seasonally variable models are better in the tropical zone, where large seasonal signals may overcome model errors. Each seasonal model works best in its own season and worst in its opposite season. These internal tide models reveal that mode-1 M2 internal tides are subject to significant seasonal variability and that their seasonal variations are a function of location. Large seasonal variations dominantly occur in the tropical zone, where the World Ocean Atlas climatology shows strong seasonal variations in ocean stratification. Seasonal phase variations are obtained from the directionally decomposed internal tide components. They are dominantly ±60° at the equator and up to ±120° in the central Arabian Sea. Incoherence caused by seasonal phase variations is usually less than 10% but may be up to 40%–50% in the tropical zone.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhongxiang Zhao, zzhao@apl.uw.edu

Abstract

The seasonal variability of mode-1 M2 internal tides is investigated using 25 years of multisatellite altimeter data from 1992 to 2017. Four seasonal internal tide models are constructed using seasonally subsetted altimeter data and World Ocean Atlas seasonal climatologies. This work is made possible by a newly developed mapping procedure that can significantly suppress model errors. Seasonal-mean and seasonally variable internal tide models are derived from the four seasonal models. All of the models are intercompared and evaluated using independent CryoSat-2 data. The seasonal-mean model is overall the best model because averaging the four seasonal models further reduces model errors. The seasonally variable models are better in the tropical zone, where large seasonal signals may overcome model errors. Each seasonal model works best in its own season and worst in its opposite season. These internal tide models reveal that mode-1 M2 internal tides are subject to significant seasonal variability and that their seasonal variations are a function of location. Large seasonal variations dominantly occur in the tropical zone, where the World Ocean Atlas climatology shows strong seasonal variations in ocean stratification. Seasonal phase variations are obtained from the directionally decomposed internal tide components. They are dominantly ±60° at the equator and up to ±120° in the central Arabian Sea. Incoherence caused by seasonal phase variations is usually less than 10% but may be up to 40%–50% in the tropical zone.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhongxiang Zhao, zzhao@apl.uw.edu

Supplementary Materials

    • Supplemental Materials (PDF 10.05 MB)
Save