Overlooked Current Estimation Biases Arising from the Lagrangian Argo Trajectory Derivation Method

Tianyu Wang aState Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
bUniversity of Chinese Academy of Sciences, Beijing, China
cSouthern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China

Search for other papers by Tianyu Wang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7842-0801
,
Yan Du aState Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
bUniversity of Chinese Academy of Sciences, Beijing, China
cSouthern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China

Search for other papers by Yan Du in
Current site
Google Scholar
PubMed
Close
, and
Minyang Wang aState Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
bUniversity of Chinese Academy of Sciences, Beijing, China
cSouthern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China

Search for other papers by Minyang Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An Argo simulation system is used to provide synthetic Lagrangian trajectories based on the Estimating the Circulation and Climate of the Ocean Model, phase II (ECCO2). In combination with ambient Eulerian velocity at the reference layer (1000 m) from the model, quantitative metrics of the Lagrangian trajectory–derived velocities are computed. The result indicates that the biases induced by the derivation algorithm are strongly linked with ocean dynamics. In low latitudes, Ekman currents and vertically sheared geostrophic currents influence both the magnitude and the direction of the derivation velocity vectors. The maximal shear-induced biases exist near the equator with the amplitudes reaching up to about 1.2 cm s−1. The angles of the shear biases are pronounced in the low-latitude oceans, ranging from −8° to 8°. Specifically, the study shows an overlooked bias from the float drifting motions that mainly occurs in the western boundary current and Antarctic Circumpolar Current (ACC) regions. In these regions, a recently reported horizontal acceleration measured via Lagrangian floats is significantly associated with the strong eddy–jet interactions. The acceleration could induce an overestimation of Eulerian current velocity magnitudes. For the common Argo floats with a 9-day float parking period, the derivation speed biases induced by velocity acceleration would be as large as 3 cm s−1, approximately 12% of the ambient velocity. It might have implications to map the mean middepth ocean currents from Argo trajectories, as well as to understand the dynamics of eddy–jet interactions in the ocean.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yan Du, duyan@scsio.ac.cn

Abstract

An Argo simulation system is used to provide synthetic Lagrangian trajectories based on the Estimating the Circulation and Climate of the Ocean Model, phase II (ECCO2). In combination with ambient Eulerian velocity at the reference layer (1000 m) from the model, quantitative metrics of the Lagrangian trajectory–derived velocities are computed. The result indicates that the biases induced by the derivation algorithm are strongly linked with ocean dynamics. In low latitudes, Ekman currents and vertically sheared geostrophic currents influence both the magnitude and the direction of the derivation velocity vectors. The maximal shear-induced biases exist near the equator with the amplitudes reaching up to about 1.2 cm s−1. The angles of the shear biases are pronounced in the low-latitude oceans, ranging from −8° to 8°. Specifically, the study shows an overlooked bias from the float drifting motions that mainly occurs in the western boundary current and Antarctic Circumpolar Current (ACC) regions. In these regions, a recently reported horizontal acceleration measured via Lagrangian floats is significantly associated with the strong eddy–jet interactions. The acceleration could induce an overestimation of Eulerian current velocity magnitudes. For the common Argo floats with a 9-day float parking period, the derivation speed biases induced by velocity acceleration would be as large as 3 cm s−1, approximately 12% of the ambient velocity. It might have implications to map the mean middepth ocean currents from Argo trajectories, as well as to understand the dynamics of eddy–jet interactions in the ocean.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yan Du, duyan@scsio.ac.cn
Save
  • Atlas, R., R. N. Hoffman, J. Ardizzone, S. M. Leidner, J. C. Jusem, D. K. Smith, and D. Gombos, 2011: A cross-calibrated multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull. Amer. Meteor. Soc., 92, 157174, https://doi.org/10.1175/2010BAMS2946.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, C., and J. B. Sallée, 2017: Can we reconstruct mean and eddy fluxes from Argo floats? Ocean Modell., 120, 83100, https://doi.org/10.1016/j.ocemod.2017.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/j.pocean.2011.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1991: Observing the general-circulation with floats. Deep-Sea Res., 38, S531S571, https://doi.org/10.1016/S0198-0149(12)80023-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, R. E., J. T. Sherman, and J. Dufour, 2001: Profiling ALACEs and other advances in autonomous subsurface floats. J. Atmos. Oceanic Technol., 18, 982993, https://doi.org/10.1175/1520-0426(2001)018<0982:PAAOAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duarte-Carvajalino, J. M., and G. Sapiro, 2009: Learning to sense sparse signals: Simultaneous sensing matrix and sparsifying dictionary optimization. IEEE Trans. Image Process, 18, 13951408, https://doi.org/10.1109/TIP.2009.2022459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 2003: Float observations of the Southern Ocean. Part I: Estimating mean fields, bottom velocities, and topographic steering. J. Phys. Oceanogr., 33, 11671181, https://doi.org/10.1175/1520-0485(2003)033<1167:FOOTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, A. R., and S. C. Riser, 2014: A global analysis of Sverdrup balance using absolute geostrophic velocities from Argo. J. Phys. Oceanogr., 44, 12131229, https://doi.org/10.1175/JPO-D-12-0206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunter, J. R., P. D. Craig, and H. E. Phillips, 1993: On the use of random-walk models with spatially-variable diffusivity. J. Comput. Phys., 106, 366376, https://doi.org/10.1016/S0021-9991(83)71114-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinderman, A. J., and J. F. Monahan, 1977: Computer generation of random variables using the ratio of uniform deviates. ACM Trans. Math. Software, 3, 257260, https://doi.org/10.1145/355744.355750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebedev, K., H. Yoshinari, N. Maximenko, and P. Hacker, 2007: YoMaHa’07: Velocity data assessed from trajectories of Argo floats at parking level and at the sea surface, IPRC Tech. Note No. 4(2), 16 pp., http://apdrc.soest.hawaii.edu/projects/yomaha/yomaha07/YoMaHa070612.pdf.

    • Search Google Scholar
    • Export Citation
  • Lichter, S., J. B. Flor, and G. J. F. Vanheijst, 1992: Modeling the separation and eddy formation of coastal currents in a stratified tank. Exp. Fluids, 13, 1116, https://doi.org/10.1007/BF00208069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L. J., and W. Schwerdtfeger, 1970: Ekman spirals for exponential thermal wind. Bound.-Layer Meteor., 1, 137145, https://doi.org/10.1007/BF00185735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., I. Fukumori, and T. Lee, 2005a: Using Green’s functions to calibrate an ocean general circulation model. Mon. Wea. Rev., 133, 12241240, https://doi.org/10.1175/MWR2912.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., and Coauthors, 2005b: NASA supercomputer improves prospects for ocean climate research. Eos, Trans. Amer. Geophys. Union, 86, 8996, https://doi.org/10.1029/2005EO090002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., and Coauthors, 2008: ECCO2: High resolution global ocean and sea ice data synthesis. Mercator Ocean Quarterly Newsletter, No. 31, Mercator Ocean, Toulouse, France, 13–21, https://www.mercator-ocean.fr/wp-content/uploads/2015/06/lettre_31_en.pdf.

    • Search Google Scholar
    • Export Citation
  • Ngeve, M. N., T. Van der Stocken, D. Menemenlis, N. Koedam, and L. Triest, 2016: Contrasting effects of historical sea level rise and contemporary ocean currents on regional gene flow of Rhizophora racemosa in eastern Atlantic mangroves. PLOS ONE, 11, e0150950, https://doi.org/10.1371/journal.pone.0150950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ollitrault, M., and J. P. Rannou, 2013: ANDRO: An Argo-based deep displacement dataset. J. Atmos. Oceanic Technol., 30, 759788, https://doi.org/10.1175/JTECH-D-12-00073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J. J., K. Kim, B. A. King, and S. C. Riser, 2005: An advanced method to estimate deep currents from profiling floats. J. Atmos. Oceanic Technol., 22, 12941304, https://doi.org/10.1175/JTECH1748.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., O. Boebel, and H. Freeland, 1998: On the design and implementation of Argo: An initial plan for a global array of profiling floats. ICPO Rep. 21, GODAE Rep. 5, GODAE International Project Office, 32 pp.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and Coauthors, 2009: The Argo program observing the global ocean with profiling floats. Oceanography, 22, 3443, https://doi.org/10.5670/oceanog.2009.36.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and Coauthors, 2019: On the future of Argo: An enhanced global array of physical and biogeochemical sensing floats. Front. Mar. Sci., 6, 439, https://doi.org/10.3389/fmars.2019.00439.

    • Search Google Scholar
    • Export Citation
  • Schmitz, W. J., 1996: On the world ocean circulation. Volume I: Some global features/North Atlantic circulation. Woods Hole Oceanographic Institution Tech. Rep. WHOI-96-03, 141 pp., https://doi.org/10.1575/1912/355.

    • Search Google Scholar
    • Export Citation
  • Schott, F., and H. Stommel, 1978: Beta-spirals and absolute velocities in different oceans. Deep-Sea Res., 25, 9611010, https://doi.org/10.1016/0146-6291(78)90583-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stommel, H., and F. Schott, 1977: The beta spiral and the determination of the absolute velocity field from hydrographic station data. Deep-Sea Res, 24, 325329, https://doi.org/10.1016/0146-6291(77)93000-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swift, D. D., and S. C. Riser, 1994: RAFOS floats: Defining and targeting surfaces of neutral buoyancy. J. Atmos. Oceanic Technol., 11, 10791092, https://doi.org/10.1175/1520-0426(1994)011<1079:RFDATS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L., G. L. Pickard, W. Emery, and J. H. Swift, 2011: Descriptive Physical Oceanography: An Introduction. 6th ed., Elsevier, 560.

  • Tamsitt, V., and Coauthors, 2017: Spiraling pathways of global deep waters to the surface of the Southern Ocean. Nat. Commun., 8, 172, https://doi.org/10.1038/s41467-017-00197-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Sebille, E., and Coauthors, 2018: Lagrangian ocean analysis: Fundamentals and practices. Ocean Modell., 121, 4975, https://doi.org/10.1016/j.ocemod.2017.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volkov, D. L., T. Lee, and L. L. Fu, 2008: Eddy-induced meridional heat transport in the ocean. Geophys. Res. Lett., 35, L20601, https://doi.org/10.1029/2008GL035490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, T., S. T. Gille, M. R. Mazloff, N. V. Zilberman, and Y. Du, 2018: Numerical simulations to project Argo float positions in the middepth and deep southwest Pacific. J. Atmos. Oceanic Technol., 35, 14251440, https://doi.org/10.1175/JTECH-D-17-0214.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, T., S. T. Gille, M. R. Mazloff, N. V. Zilberman, and Y. Du, 2020: Eddy‐induced acceleration of Argo floats. J. Geophys. Res. Oceans, 125, e2019JC016042, https://doi.org/10.1029/2019JC016042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijffels, S. E., J. M. Toole, and R. Davis, 2001: Revisiting the South Pacific subtropical circulation: A synthesis of World Ocean Circulation Experiment observations along 32°S. J. Geophys. Res., 106, 19 48119 513, https://doi.org/10.1029/1999JC000118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, R. G., C. Wilson, and C. W. Hughes, 2007: Ocean and atmosphere storm tracks: The role of eddy vorticity forcing. J. Phys. Oceanogr., 37, 22672289, https://doi.org/10.1175/JPO3120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willis, J. K., and L. L. Fu, 2008: Combining altimeter and subsurface float data to estimate the time-averaged circulation in the upper ocean. J. Geophys. Res., 113, https://doi.org/10.1029/2007JC004690.

    • Search Google Scholar
    • Export Citation
  • Wong, A. P. S., and Coauthors, 2020: Argo Data 1999–2019: Two million temperature-salinity profiles and subsurface velocity observations from a global array of profiling floats. Front. Mar. Sci., 7, 700, https://doi.org/10.3389/fmars.2020.00700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, J. P., and J. Zhu, 2008: Estimation of the surface and mid-depth currents from Argo floats in the Pacific and error analysis. J. Mar. Syst., 73, 6175, https://doi.org/10.1016/j.jmarsys.2007.09.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Z. Y., and P. R. Voke, 2001: Large-eddy simulation of boundary-layer separation and transition at a change of surface curvature. J. Fluid Mech., 439, 305333, https://doi.org/10.1017/S0022112001004633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zilberman, N. V., D. H. Roemmich, and S. T. Gille, 2017: The East Pacific Rise current: Topographic enhancement of the interior flow in the South Pacific Ocean. Geophys. Res. Lett., 44, 277285, https://doi.org/10.1002/2016GL069039.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 493 0 0
Full Text Views 2470 1876 173
PDF Downloads 720 147 24