Wind Turbulence over Misaligned Surface Waves and Air–Sea Momentum Flux. Part I: Waves Following and Opposing Wind

Nyla T. Husain aGraduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island

Search for other papers by Nyla T. Husain in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2247-172X
,
Tetsu Hara aGraduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island

Search for other papers by Tetsu Hara in
Current site
Google Scholar
PubMed
Close
, and
Peter P. Sullivan bNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Peter P. Sullivan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Air–sea momentum and scalar fluxes are strongly influenced by the coupling dynamics between turbulent winds and a spectrum of waves. Because direct field observations are difficult, particularly in high winds, many modeling and laboratory studies have aimed to elucidate the impacts of the sea state and other surface wave features on momentum and energy fluxes between wind and waves as well as on the mean wind profile and drag coefficient. Opposing wind is common under transient winds, for example, under tropical cyclones, but few studies have examined its impacts on air–sea fluxes. In this study, we employ a large-eddy simulation for wind blowing over steep sinusoidal waves of varying phase speeds, both following and opposing wind, to investigate impacts on the mean wind profile, drag coefficient, and wave growth/decay rates. The airflow dynamics and impacts rapidly change as the wave age increases for waves following wind. However, there is a rather smooth transition from the slowest waves following wind to the fastest waves opposing wind, with gradual enhancement of a flow perturbation identified by a strong vorticity layer detached from the crest despite the absence of apparent airflow separation. The vorticity layer appears to increase the effective surface roughness and wave form drag (wave attenuation rate) substantially for faster waves opposing wind.

Significance Statement

Surface waves increase friction at the sea surface and modify how wind forces upper-ocean currents and turbulence. Therefore, it is important to include effects of different wave conditions in weather and climate forecasts. We aim to inform more accurate forecasts by investigating wind blowing over waves propagating in the opposite direction using large-eddy simulation. We find that when waves oppose wind, they decay as expected, but also increase the surface friction much more drastically than when waves follow wind. This finding has important implications for how waves opposing wind are represented as a source of surface friction in forecast models.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nyla T. Husain, nylahusain@uri.edu

Abstract

Air–sea momentum and scalar fluxes are strongly influenced by the coupling dynamics between turbulent winds and a spectrum of waves. Because direct field observations are difficult, particularly in high winds, many modeling and laboratory studies have aimed to elucidate the impacts of the sea state and other surface wave features on momentum and energy fluxes between wind and waves as well as on the mean wind profile and drag coefficient. Opposing wind is common under transient winds, for example, under tropical cyclones, but few studies have examined its impacts on air–sea fluxes. In this study, we employ a large-eddy simulation for wind blowing over steep sinusoidal waves of varying phase speeds, both following and opposing wind, to investigate impacts on the mean wind profile, drag coefficient, and wave growth/decay rates. The airflow dynamics and impacts rapidly change as the wave age increases for waves following wind. However, there is a rather smooth transition from the slowest waves following wind to the fastest waves opposing wind, with gradual enhancement of a flow perturbation identified by a strong vorticity layer detached from the crest despite the absence of apparent airflow separation. The vorticity layer appears to increase the effective surface roughness and wave form drag (wave attenuation rate) substantially for faster waves opposing wind.

Significance Statement

Surface waves increase friction at the sea surface and modify how wind forces upper-ocean currents and turbulence. Therefore, it is important to include effects of different wave conditions in weather and climate forecasts. We aim to inform more accurate forecasts by investigating wind blowing over waves propagating in the opposite direction using large-eddy simulation. We find that when waves oppose wind, they decay as expected, but also increase the surface friction much more drastically than when waves follow wind. This finding has important implications for how waves opposing wind are represented as a source of surface friction in forecast models.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nyla T. Husain, nylahusain@uri.edu
Save
  • Åkervik, E., and M. Vartdal, 2019: The role of wave kinematics in turbulent flow over waves. J. Fluid Mech., 880, 890915, https://doi.org/10.1017/jfm.2019.708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Al-Zanaidi, M. A., and W. H. Hui, 1984: Turbulent airflow over water waves-a numerical study. J. Fluid Mech., 148, 225246, https://doi.org/10.1017/S0022112084002329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., 2004: Spray stress revisited. J. Phys. Oceanogr., 34, 14291440 https://doi.org/10.1175/1520-0485(2004)034<1429:SSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., T. H. C. Herbers, K. P. Watts, G. P. van Vledder, R. Jensen, and H. C. Graber, 2007: Swell and slanting-fetch effects on wind wave growth. J. Phys. Oceanogr., 37, 908931, https://doi.org/10.1175/JPO3039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banner, M. L., 1990: The influence of wave breaking on the surface pressure distribution in wind–wave interactions. J. Fluid Mech., 211, 463495, https://doi.org/10.1017/S0022112090001653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banner, M. L., and W. K. Melville, 1976: On the separation of air flow over water waves. J. Fluid Mech., 77, 825842, https://doi.org/10.1017/S0022112076002905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., and J. C. R. Hunt, 1993: Turbulent shear flow over slowly moving waves. J. Fluid Mech., 251, 109, https://doi.org/10.1017/S0022112093003350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., and J. C. R. Hunt, 1998: Turbulent flow over hills and waves. Annu. Rev. Fluid Mech., 30, 507538, https://doi.org/10.1146/annurev.fluid.30.1.507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., T. M. J. Newley, and J. C. R. Hunt, 1993: The drag on an undulating surface induced by the flow of a turbulent boundary layer. J. Fluid Mech., 249, 557596, https://doi.org/10.1017/S0022112093001296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. M., M. T. Montgomery, and K. A. Emanuel, 2012: Air–sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci., 69, 31973222, https://doi.org/10.1175/JAS-D-11-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the coupled boundary layer air–sea transfer experiment. Bull. Amer. Meteor. Soc., 88, 357374, https://doi.org/10.1175/BAMS-88-3-357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourassa, M. A., D. G. Vincent, and W. L. Wood, 1999: A flux parameterization including the effects of capillary waves and sea state. J. Atmos. Sci., 56, 11231139, https://doi.org/10.1175/1520-0469(1999)056<1123:AFPITE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckley, M. P., and F. Veron, 2016: Structure of the airflow above surface waves. J. Phys. Oceanogr., 46, 13771397, https://doi.org/10.1175/JPO-D-15-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckley, M. P., and F. Veron, 2019: The turbulent airflow over wind generated surface waves. Eur. J. Mech., 73B, 132143, https://doi.org/10.1016/j.euromechflu.2018.04.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, T., and L. Shen, 2021: A numerical and theoretical study of wind over fast-propagating water waves. J. Fluid Mech., 919, A38, https://doi.org/10.1017/jfm.2021.416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, T., B.-Q. Deng, and L. Shen, 2020: A simulation-based mechanistic study of turbulent wind blowing over opposing water waves. J. Fluid Mech., 901, A07, https://doi.org/10.1017/jfm.2020.591.

    • Search Google Scholar
    • Export Citation
  • Chalikov, D., and S. Rainchik, 2011: Coupled numerical modelling of wind and waves and the theory of the wave boundary layer. Bound.-Layer Meteor., 138, 141, https://doi.org/10.1007/s10546-010-9543-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and M. Curcic, 2016: Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations. Ocean Modell., 103, 161176, https://doi.org/10.1016/j.ocemod.2015.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., I. Ginis, and T. Hara, 2020: Impact of shoaling ocean surface waves on wind stress and drag coefficient in coastal waters: 2. Tropical cyclones. J. Geophys. Res. Oceans, 125, e2020JC016223, https://doi.org/10.1029/2020JC016223.

    • Search Google Scholar
    • Export Citation
  • Cohen, J. E., 1997: Theory of turbulent wind over fast and slow waves. Ph.D. thesis, University of Cambridge, 228 pp., https://doi.org/10.17863/CAM.31086.

    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., and Coauthors, 2019: Air-sea fluxes with a focus on heat and momentum. Front. Mar. Sci., 6, 430, https://doi.org/10.3389/fmars.2019.00430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Degani, A. T., J. D. A. Walker, and F. T. Smith, 1998: Unsteady separation past moving surfaces. J. Fluid Mech., 375, 138, https://doi.org/10.1017/S0022112098001839.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deike, L., and W. K. Melville, 2018: Gas transfer by breaking waves. Geophys. Res. Lett., 45, 10 48210 492, https://doi.org/10.1029/2018GL078758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deike, L., L. Lenain, and W. K. Melville, 2017: Air entrainment by breaking waves. Geophys. Res. Lett., 44, 37793787, https://doi.org/10.1002/2017GL072883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., 1999: Wind-induced growth and attenuation of laboratory waves. Wind-over-Wave Couplings: Perspectives and Prospects, S. G. Sajjadi, N. H. Thomas, and J. C. R. Hunt, Eds., Clarendon, 183194.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, https://doi.org/10.1029/2004GL019460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., F. W. Dobson, S. D. Smith, and R. J. Anderson, 1993: On the dependence of sea surface roughness on wave development. J. Phys. Oceanogr., 23, 21432149, https://doi.org/10.1175/1520-0485(1993)023<2143:OTDOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., A. V. Babanin, I. R. Young, and M. L. Banner, 2006: Wave-follower field measurements of the wind-input spectral function. Part II: Parameterization of the wind input. J. Phys. Oceanogr., 36, 16721689, https://doi.org/10.1175/JPO2933.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., M. Curcic, S. S. Chen, and A. K. Magnusson, 2012: Modeling waves and wind stress. J. Geophys. Res., 117, C00J23, https://doi.org/10.1029/2011JC007787.

    • Search Google Scholar
    • Export Citation
  • Druzhinin, O. A., Y. I. Troitskaya, and S. S. Zilitinkevich, 2012: Direct numerical simulation of a turbulent wind over a wavy water surface. J. Geophys. Res., 117, C00J05, https://doi.org/10.1029/2011JC007789.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and C. W. Fairall, 1998: Similarity relationships in the marine atmospheric surface layer for terms in the TKE and scalar variance budgets. J. Atmos. Sci., 55, 23112328, https://doi.org/10.1175/1520-0469(1998)055<2311:SRITMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 15891610, https://doi.org/10.1175/JPO-D-12-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., I. Ginis, T. Hara, C. W. Wright, and E. J. Walsh, 2009: Numerical simulations and observations of surface wave fields under an extreme tropical cyclone. J. Phys. Oceanogr., 39, 20972116, https://doi.org/10.1175/2009JPO4224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gad-el Hak, M., and D. M. Bushnell, 1991: Separation control. J. Fluids Eng., 113, 530, https://doi.org/10.1115/1.2926497.

  • Gent, P. R., 1977: A numerical model of the air flow above water waves. Part 2. J. Fluid Mech., 82, 349369, https://doi.org/10.1017/S0022112077000706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and P. A. Taylor, 1976: A numerical model of the air flow above water waves. J. Fluid Mech., 77, 105128, https://doi.org/10.1017/S0022112076001158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., C. W. Fairall, J. E. Hare, J. B. Edson, and S. D. Miller, 2003: Wind stress vector over ocean waves. J. Phys. Oceanogr., 33, 24082429, https://doi.org/10.1175/1520-0485(2003)033<2408:WSVOOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grare, L., W. L. Peirson, H. Branger, J. W. Walker, J.-P. Giovanangeli, and V. Makin, 2013: Growth and dissipation of wind-forced, deep-water waves. J. Fluid Mech., 722, 550, https://doi.org/10.1017/jfm.2013.88.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hao, X., and L. Shen, 2019: Wind-wave coupling study using LES of wind and phase-resolved simulation of nonlinear waves. J. Fluid Mech., 874, 391425, https://doi.org/10.1017/jfm.2019.444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hara, T., and S. E. Belcher, 2002: Wind forcing in the equilibrium range of wind-wave spectra. J. Fluid Mech., 470, 223245, https://doi.org/10.1017/S0022112002001945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hara, T., and S. E. Belcher, 2004: Wind profile and drag coefficient over mature ocean surface wave spectra. J. Phys. Oceanogr., 34, 23452358, https://doi.org/10.1175/JPO2633.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hara, T., and P. Sullivan, 2015: Wave boundary layer turbulence over surface waves in a strongly forced condition. J. Phys. Oceanogr., 45, 868883, https://doi.org/10.1175/JPO-D-14-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, J., I. Fultion, and R. Street, 1995: Decay of waves in an adverse wind. Proceedings of the Sixth Asian Congress of Fluid Mechanics, Y. Chew and C. Tso, Eds., Nanyang Technological University, 224227.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, D., and J. Bösenberg, 1991: Field measurements of wave-induced pressure over wind-sea and swell. J. Fluid Mech., 230, 391428, https://doi.org/10.1017/S0022112091000848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L. H., M. D. Powell, and J. D. Pietrzak, 2012: Wind and waves in extreme hurricanes. J. Geophys. Res., 117, C09003, https://doi.org/10.1029/2012JC007983.

    • Search Google Scholar
    • Export Citation
  • Husain, N. T., T. Hara, M. P. Buckley, K. Yousefi, F. Veron, and P. P. Sullivan, 2019: Boundary layer turbulence over surface waves in a strongly forced condition: LES and observation. J. Phys. Oceanogr., 49, 19972015, https://doi.org/10.1175/JPO-D-19-0070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Husain, N. T., T. Hara, and P. P. Sullivan, 2021: Wind turbulence over misaligned surface waves and air–sea momentum flux. Part II: Waves in oblique wind. J. Phys. Oceanogr., 52, 141159, https://doi.org/10.1175/JPO-D-21-0044.1.

    • Search Google Scholar
    • Export Citation
  • Innocentini, V., and I. A. Goncalves, 2010: A simple spume droplets and wave stress parameterizations to study the impact on maritime near-surface variables. Geophysical Research Abstracts, Vol. 12, Abstract EGU2010-14701, https://meetingorganizer.copernicus.org/EGU2010/EGU2010-14701.pdf.

    • Search Google Scholar
    • Export Citation
  • Jiang, Q., P. P. Sullivan, S. Wang, J. Doyle, and L. Vincent, 2016: Impact of swell on air–sea momentum flux and marine boundary layer under low-wind conditions. J. Atmos. Sci., 73, 26832697, https://doi.org/10.1175/JAS-D-15-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. N., and V. K. Makin, 2001: The impact of air-flow separation on the drag of the sea surface. Bound.-Layer Meteor., 98, 155171, https://doi.org/10.1023/A:1018719917275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. N., and V. K. Makin, 2002: Coupled dynamics of short waves and the airflow over long surface waves. J. Geophys. Res., 107, 3209, https://doi.org/10.1029/2001JC001251.

    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. N., and V. K. Makin, 2004: Impact of swell on the marine atmospheric boundary layer. J. Phys. Oceanogr., 34, 934949, https://doi.org/10.1175/1520-0485(2004)034<0934:IOSOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. N., and V. K. Makin, 2011: Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Bound.-Layer Meteor., 140, 383410, https://doi.org/10.1007/s10546-011-9624-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kukulka, T., and T. Hara, 2008: The effect of breaking waves on a coupled model of wind and ocean surface waves. Part II: Growing seas. J. Phys. Oceanogr., 38, 21642184, https://doi.org/10.1175/2008JPO3962.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kukulka, T., T. Hara, and S. E. Belcher, 2007: A model of the air–sea momentum flux and breaking-wave distribution for strongly forced wind waves. J. Phys. Oceanogr., 37, 18111828, https://doi.org/10.1175/JPO3084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336, https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., D. Yang, X. Guo, and L. Shen, 2010: Numerical study of pressure forcing of wind on dynamically evolving water waves. Phys. Fluids, 22, 041704, https://doi.org/10.1063/1.3414832.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makin, V. K., and V. N. Kudryavtsev, 1999: Coupled sea surface-atmosphere model: 1. Wind over waves coupling. J. Geophys. Res., 104, 76137623, https://doi.org/10.1029/1999JC900006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makin, V. K., and V. N. Kudryavtsev, 2002: Impact of dominant waves on sea drag. Bound.-Layer Meteor., 103, 8399, https://doi.org/10.1023/A:1014591222717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mastenbroek, C., 1996: Wind-wave interaction. Ph.D. thesis, Delft Technical University, 119 pp., http://resolver.tudelft.nl/uuid:b91093af-ccae-4d85-894e-af128cc9f59c.

    • Search Google Scholar
    • Export Citation
  • Meirink, J. F., V. K. Makin, and V. N. Kudryavtsev, 2003: Note on the growth rate of water waves propagating at an arbitrary angle to the wind. Bound.-Layer Meteor., 106, 171183, https://doi.org/10.1023/A:1020835211837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitsuyasu, H., and Y. Yoshida, 2005: Air-sea interactions under the existence of opposing swell. J. Oceanogr., 61, 141154, https://doi.org/10.1007/s10872-005-0027-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 20522062, https://doi.org/10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and P. Sullivan, 2015: Large eddy simulation. Encyclopedia of Atmospheric Sciences, Vol. 4, 2nd ed. G. North, F. Zhang, and J. Pyle, Eds., Academic Press, 232240, https://doi.org/10.1016/B978-0-12-382225-3.00201-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, I.-J., I. Ginis, T. Hara, H. L. Tolman, C. W. Wright, and E. J. Walsh, 2003: Numerical simulation of sea surface directional wave spectra under hurricane wind forcing. J. Phys. Oceanogr., 33, 16801706, https://doi.org/10.1175/2410.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, I.-J., T. Hara, I. Ginis, S. E. Belcher, and H. L. Tolman, 2004: Effect of surface waves on air–sea momentum exchange. Part I: Effect of mature and growing seas. J. Atmos. Sci., 61, 23212333, https://doi.org/10.1175/1520-0469(2004)061<2321:EOSWOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, I.-J., J.-I. Kwon, J.-C. Lee, J.-S. Shim, S. K. Kang, I. S. Oh, and S. J. Kwon, 2009: Effect of the surface wind stress parameterization on the storm surge modeling. Ocean Modell., 29, 115127, https://doi.org/10.1016/j.ocemod.2009.03.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, J. A., and F. Veron, 2009: Nonlinear formulation of the bulk surface stress over breaking waves: Feedback mechanisms from air-flow separation. Bound.-Layer Meteor., 130, 117134, https://doi.org/10.1007/s10546-008-9334-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peirson, W. L., and A. W. Garcia, 2008: On the wind-induced growth of slow water waves of finite steepness. J. Fluid Mech., 608, 243274, https://doi.org/10.1017/S002211200800205X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peirson, W. L., A. W. Garcia, and S. E. Pells, 2003: Water wave attenuation due to opposing wind. J. Fluid Mech., 487, 345365, https://doi.org/10.1017/S0022112003004750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, https://doi.org/10.1038/nature01481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichl, B. G., T. Hara, and I. Ginis, 2014: Sea state dependence of the wind stress over the ocean under hurricane winds. J. Geophys. Res. Oceans, 119, 3051, https://doi.org/10.1002/2013JC009289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reul, N., H. Branger, and J.-P. Giovanangeli, 2008: Air flow structure over short-gravity breaking water waves. Bound.-Layer Meteor., 126, 477505, https://doi.org/10.1007/s10546-007-9240-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, D. H., and P. P. Sullivan, 2013: Sea surface drag and the role of spray. Geophys. Res. Lett., 40, 656660, https://doi.org/10.1002/grl.50163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roekel, L. V., B. Fox-Kemper, P. P. Sullivan, P. E. Hamlington, and S. Haney, 2012: The form and orientation of Langmuir cells for misaligned winds and waves. J. Geophys. Res., 117, C05001, https://doi.org/10.1029/2011JC007516.

    • Search Google Scholar
    • Export Citation
  • Savelyev, I. B., M. P. Buckley, and B. K. Haus, 2020: The impact of nonbreaking waves on wind-driven ocean surface turbulence. J. Geophys. Res. Oceans, 125, e2019JC015573, https://doi.org/10.1029/2019JC015573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, R. L., F. W. Dobson, J. A. Elliott, and R. B. Long, 1981: Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech., 102, 159, https://doi.org/10.1017/S0022112081002528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and J. C. McWilliams, 2010: Dynamics of winds and currents coupled to surface waves. Annu. Rev. Fluid Mech., 42, 1942, https://doi.org/10.1146/annurev-fluid-121108-145541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and C.-H. Moeng, 2000: Simulation of turbulent flow over idealized water waves. J. Fluid Mech., 404, 4785, https://doi.org/10.1017/S0022112099006965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and E. G. Patton, 2014: Large-eddy simulation of marine atmospheric boundary layers above a spectrum of moving waves. J. Atmos. Sci., 71, 40014027, https://doi.org/10.1175/JAS-D-14-0095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., M. L. Banner, R. P. Morison, and W. L. Peirson, 2018a: Impacts of wave age on turbulent flow and drag of steep waves. Procedia IUTAM, 26, 174183, https://doi.org/10.1016/j.piutam.2018.03.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., M. L. Banner, R. P. Morison, and W. L. Peirson, 2018b: Turbulent flow over steep steady and unsteady waves under strong wind forcing. J. Phys. Oceanogr., 48, 327, https://doi.org/10.1175/JPO-D-17-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suzuki, N., Y. Toba, and S. Komori, 2010: Examination of drag coefficient with special reference to the wind sea Reynolds number: Conditions with counter and mixed swell. J. Oceanogr., 66, 731739, https://doi.org/10.1007/s10872-010-0060-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suzuki, N., T. Hara, and P. P. Sullivan, 2013: Impact of breaking wave form drag on near-surface turbulence and drag coefficient over young seas at high winds. J. Phys. Oceanogr., 43, 324343, https://doi.org/10.1175/JPO-D-12-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, M., 2018: A model for the wind-driven current in the wavy oceanic surface layer: Apparent friction velocity reduction and roughness length enhancement. J. Phys. Oceanogr., 48, 27212736, https://doi.org/10.1175/JPO-D-18-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., and D. Chalikov, 1996: Source terms in a third-generation wind wave model. J. Phys. Oceanogr., 26, 24972518, https://doi.org/10.1175/1520-0485(1996)026<2497:STIATG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troitskaya, Y., D. Sergeev, O. Ermakova, and G. Balandina, 2011: Statistical parameters of the air turbulent boundary layer over steep water waves measured by the PIV technique. J. Phys. Oceanogr., 41, 14211454, https://doi.org/10.1175/2011JPO4392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troitskaya, Y., D. A. Sergeev, O. Druzhinin, A. A. Kandaurov, O. S. Ermakova, E. V. Ezhova, I. Esau, and S. Zilitinkevich, 2014: Atmospheric boundary layer over steep surface waves. Ocean Dyn., 64, 11531161, https://doi.org/10.1007/s10236-014-0743-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veron, F., 2015: Ocean spray. Annu. Rev. Fluid Mech., 47, 507538, https://doi.org/10.1146/annurev-fluid-010814-014651.

  • Veron, F., G. Saxena, and S. K. Misra, 2007: Measurements of the viscous tangential stress in the airflow above wind waves. Geophys. Res. Lett., 34, L19603, https://doi.org/10.1029/2007GL031242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., T. Kukulka, B. G. Reichl, T. Hara, and I. Ginis, 2019: Wind–wave misalignment effects on Langmuir turbulence in tropical cyclone conditions. J. Phys. Oceanogr., 49, 31093126, https://doi.org/10.1175/JPO-D-19-0093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., and L. Shen, 2010: Direct-simulation-based study of turbulent flow over various waving boundaries. J. Fluid Mech., 650, 131180, https://doi.org/10.1017/S0022112009993557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., and L. Shen, 2017: Direct numerical simulation of scalar transport in turbulent flows over progressive surface waves. J. Fluid Mech., 819, 58103, https://doi.org/10.1017/jfm.2017.164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., C. Meneveau, and L. Shen, 2013: Dynamic modelling of sea-surface roughness for large-eddy simulation of wind over ocean wave field. J. Fluid Mech., 726, 6299, https://doi.org/10.1017/jfm.2013.215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Z., B.-Q. Deng, and L. Shen, 2018: Direct numerical simulation of wind turbulence over breaking waves. J. Fluid Mech., 850, 120155, https://doi.org/10.1017/jfm.2018.466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., and R. J. Sobey, 1985: Measurements of the wind-wave energy flux in an opposing wind. J. Fluid Mech., 151, 427442, https://doi.org/10.1017/S0022112085001033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yousefi, K., F. Veron, and M. P. Buckley, 2020: Momentum flux measurements in the airflow over wind-generated surface waves. J. Fluid Mech., 895, A15, https://doi.org/10.1017/jfm.2020.276.

    • Search Google Scholar
    • Export Citation
  • Zdyrski, T., and F. Feddersen, 2020: Wind-induced changes to surface gravity wave shape in deep to intermediate water. J. Fluid Mech., 903, A31, https://doi.org/10.1017/jfm.2020.628.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 494 0 0
Full Text Views 2893 2237 161
PDF Downloads 890 238 8