Wind Turbulence over Misaligned Surface Waves and Air–Sea Momentum Flux. Part II: Waves in Oblique Wind

Nyla T. Husain aGraduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island

Search for other papers by Nyla T. Husain in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2247-172X
,
Tetsu Hara aGraduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island

Search for other papers by Tetsu Hara in
Current site
Google Scholar
PubMed
Close
, and
Peter P. Sullivan bNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Peter P. Sullivan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The coupled dynamics of turbulent airflow and a spectrum of waves are known to modify air–sea momentum and scalar fluxes. Waves traveling at oblique angles to the wind are common in the open ocean, and their effects may be especially relevant when constraining fluxes in storm and tropical cyclone conditions. In this study, we employ large-eddy simulation for airflow over steep, strongly forced waves following and opposing oblique wind to elucidate its impacts on the wind speed magnitude and direction, drag coefficient, and wave growth/decay rate. We find that oblique wind maintains a signature of airflow separation while introducing a cross-wave component strongly modified by the waves. The directions of mean wind speed and mean wind shear vary significantly with height and are misaligned from the wind stress direction, particularly toward the surface. As the oblique angle increases, the wave form drag remains positive, but the wave impact on the equivalent surface roughness (drag coefficient) rapidly decreases and becomes negative at large angles. Our findings have significant implications for how the sea-state-dependent drag coefficient is parameterized in forecast models. Our results also suggest that wind speed and wind stress measurements performed on a wave-following platform can be strongly contaminated by the platform motion if the instrument is inside the wave boundary layer of dominant waves.

Significance Statement

Surface waves increase friction at the sea surface and modify how wind forces upper-ocean currents and turbulence. Therefore, it is important to include effects of different wave conditions in weather and climate forecasts. We aim to inform more accurate forecasts by investigating wind blowing over waves propagating in oblique directions using large-eddy simulation. We find that waves traveling at a 45° angle or larger to the wind grow as expected, but do not increase or even decrease the surface friction felt by the wind—a surprising result that has significant implications for how oblique wind-waves are represented as a source of surface friction in forecast models.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nyla Husain, nylahusain@uri.edu

Abstract

The coupled dynamics of turbulent airflow and a spectrum of waves are known to modify air–sea momentum and scalar fluxes. Waves traveling at oblique angles to the wind are common in the open ocean, and their effects may be especially relevant when constraining fluxes in storm and tropical cyclone conditions. In this study, we employ large-eddy simulation for airflow over steep, strongly forced waves following and opposing oblique wind to elucidate its impacts on the wind speed magnitude and direction, drag coefficient, and wave growth/decay rate. We find that oblique wind maintains a signature of airflow separation while introducing a cross-wave component strongly modified by the waves. The directions of mean wind speed and mean wind shear vary significantly with height and are misaligned from the wind stress direction, particularly toward the surface. As the oblique angle increases, the wave form drag remains positive, but the wave impact on the equivalent surface roughness (drag coefficient) rapidly decreases and becomes negative at large angles. Our findings have significant implications for how the sea-state-dependent drag coefficient is parameterized in forecast models. Our results also suggest that wind speed and wind stress measurements performed on a wave-following platform can be strongly contaminated by the platform motion if the instrument is inside the wave boundary layer of dominant waves.

Significance Statement

Surface waves increase friction at the sea surface and modify how wind forces upper-ocean currents and turbulence. Therefore, it is important to include effects of different wave conditions in weather and climate forecasts. We aim to inform more accurate forecasts by investigating wind blowing over waves propagating in oblique directions using large-eddy simulation. We find that waves traveling at a 45° angle or larger to the wind grow as expected, but do not increase or even decrease the surface friction felt by the wind—a surprising result that has significant implications for how oblique wind-waves are represented as a source of surface friction in forecast models.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nyla Husain, nylahusain@uri.edu
Save
  • Ardhuin, F., T. H. C. Herbers, K. P. Watts, G. P. van Vledder, R. Jensen, and H. C. Graber, 2007: Swell and slanting-fetch effects on wind wave growth. J. Phys. Oceanogr., 37, 908931, https://doi.org/10.1175/JPO3039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banner, M. L., 1990: The influence of wave breaking on the surface pressure distribution in wind–wave interactions. J. Fluid Mech., 211, 463495, https://doi.org/10.1017/S0022112090001653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., T. M. J. Newley, and J. C. R. Hunt, 1993: The drag on an undulating surface induced by the flow of a turbulent boundary layer. J. Fluid Mech., 249, 557596, https://doi.org/10.1017/S0022112093001296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air–Sea Transfer experiment. Bull. Amer. Meteor. Soc., 88, 357374, https://doi.org/10.1175/BAMS-88-3-357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourassa, M. A., D. G. Vincent, and W. L. Wood, 1999: A flux parameterization including the effects of capillary waves and sea state. J. Atmos. Sci., 56, 11231139, https://doi.org/10.1175/1520-0469(1999)056<1123:AFPITE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckley, M. P., and F. Veron, 2016: Structure of the airflow above surface waves. J. Phys. Oceanogr., 46, 13771397, https://doi.org/10.1175/JPO-D-15-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgers, G., and V. K. Makin, 1993: Boundary-layer model results for wind-sea growth. J. Phys. Oceanogr., 23, 372385, https://doi.org/10.1175/1520-0485(1993)023<0372:BLMRFW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, T., B.-Q. Deng, and L. Shen, 2020: A simulation-based mechanistic study of turbulent wind blowing over opposing water waves. J. Fluid Mech., 901, A27, https://doi.org/10.1017/jfm.2020.591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., and Coauthors, 2019: Air-sea fluxes with a focus on heat and momentum. Front. Mar. Sci., 6, 430, https://doi.org/10.3389/fmars.2019.00430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., 1999: Wind-induced growth and attenuation of laboratory waves. Wind-Over-Wave Couplings: Perspectives and Prospects, S. G. Sajjadi, N. H. Thomas, and J. C. R. Hunt, Eds., Clarendon Press, 183194.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, https://doi.org/10.1029/2004GL019460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., and F. W. Dobson, 2001: The influence of swell on the drag. Wind Stress Over the Ocean, I. S. F. Jones and Y. Toba, Eds., 1st ed. Cambridge University Press, 181189, https://doi.org/10.1017/CBO9780511552076.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., F. W. Dobson, S. D. Smith, and R. J. Anderson, 1993: On the dependence of sea surface roughness on wave development. J. Phys. Oceanogr., 23, 21432149, https://doi.org/10.1175/1520-0485(1993)023<2143:OTDOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., W. M. Drennan, and K. B. Katsaros, 1997: The air–sea momentum flux in conditions of wind sea and swell. J. Phys. Oceanogr., 27, 20872099, https://doi.org/10.1175/1520-0485(1997)027<2087:TASMFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., A. V. Babanin, I. R. Young, and M. L. Banner, 2006: Wave-follower field measurements of the wind-input spectral function. Part II: Parameterization of the wind input. J. Phys. Oceanogr., 36, 16721689, https://doi.org/10.1175/JPO2933.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., M. Curcic, S. S. Chen, and A. K. Magnusson, 2012: Modeling waves and wind stress. J. Geophys. Res., 117, C00J23, https://doi.org/10.1029/2011JC007787.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., H. C. Graber, and M. A. Donelan, 1999: Evidence for the effects of swell and unsteady winds on marine wind stress. J. Phys. Oceanogr., 29, 18531864, https://doi.org/10.1175/1520-0485(1999)029<1853:EFTEOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2007: The Coupled Boundary Layer and Air–Sea Transfer experiment in low winds. Bull. Amer. Meteor. Soc., 88, 341356, https://doi.org/10.1175/BAMS-88-3-341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 15891610, https://doi.org/10.1175/JPO-D-12-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., I. Ginis, T. Hara, C. W. Wright, and E. J. Walsh, 2009: Numerical simulations and observations of surface wave fields under an extreme tropical cyclone. J. Phys. Oceanogr., 39, 20972116, https://doi.org/10.1175/2009JPO4224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geernaert, G. L., 1988: Measurements of the angle between the wind vector and wind stress vector in the surface layer over the North Sea. J. Geophys. Res., 93, 8215, https://doi.org/10.1029/JC093iC07p08215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geernaert, G. L., F. Hansen, M. Courtney, and T. Herbers, 1993: Directional attributes of the ocean surface wind stress vector. J. Geophys. Res., 98, 16 57116 582, https://doi.org/10.1029/93JC01439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., C. W. Fairall, J. E. Hare, J. B. Edson, and S. D. Miller, 2003: Wind stress vector over ocean waves. J. Phys. Oceanogr., 33, 24082429, https://doi.org/10.1175/1520-0485(2003)033<2408:WSVOOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hara, T., and S. E. Belcher, 2002: Wind forcing in the equilibrium range of wind-wave spectra. J. Fluid Mech., 470, 223245, https://doi.org/10.1017/S0022112002001945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hara, T., and S. E. Belcher, 2004: Wind profile and drag coefficient over mature ocean surface wave spectra. J. Phys. Oceanogr., 34, 23452358, https://doi.org/10.1175/JPO2633.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hara, T., and P. Sullivan, 2015: Wave boundary layer turbulence over surface waves in a strongly forced condition. J. Phys. Oceanogr., 45, 868883, https://doi.org/10.1175/JPO-D-14-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Högström, U., E. Sahlée, A.-S. Smedman, A. Rutgersson, E. Nilsson, K. K. Kahma, and W. M. Drennan, 2015: Surface stress over the ocean in swell-dominated conditions during moderate winds. J. Atmos. Sci., 72, 47774795, https://doi.org/10.1175/JAS-D-15-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L. H., M. D. Powell, and J. D. Pietrzak, 2012: Wind and waves in extreme hurricanes. J. Geophys. Res., 117, C09003, https://doi.org/10.1029/2012JC007983.

    • Search Google Scholar
    • Export Citation
  • Husain, N. T., T. Hara, M. P. Buckley, K. Yousefi, F. Veron, and P. P. Sullivan, 2019: Boundary layer turbulence over surface waves in a strongly forced condition: LES and observation. J. Phys. Oceanogr., 49, 19972015, https://doi.org/10.1175/JPO-D-19-0070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Husain, N. T., T. Hara, and P. P. Sullivan, 2021: Wind turbulence over misaligned surface waves and air–sea momentum flux. Part I: Waves following and opposing wind. J. Phys. Oceanogr., 52, 119139, https://doi.org/10.1175/JPO-D-21-0043.1.

    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. N., and V. K. Makin, 2004: Impact of swell on the marine atmospheric boundary layer. J. Phys. Oceanogr., 34, 934949, https://doi.org/10.1175/1520-0485(2004)034<0934:IOSOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, P. Y., D. Xu, and P. A. Taylor, 2000: Numerical modelling of turbulent airflow over water waves. Bound.-Layer Meteor., 95, 397425, https://doi.org/10.1023/A:1002677312259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makin, V. K., and V. N. Kudryavtsev, 1999: Coupled sea surface-atmosphere model: 1. Wind over waves coupling. J. Geophys. Res., 104, 76137623, https://doi.org/10.1029/1999JC900006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mastenbroek, C., 1996: Wind-wave interaction. Ph.D. thesis, Delft Technical University, 119 pp., http://resolver.tudelft.nl/uuid:b91093af-ccae-4d85-894e-af128cc9f59c.

  • Meirink, J. F., V. K. Makin, and V. N. Kudryavtsev, 2003: Note on the growth rate of water waves propagating at an arbitrary angle to the wind. Bound.-Layer Meteor., 106, 171183, https://doi.org/10.1023/A:1020835211837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, I.-J., I. Ginis, T. Hara, H. L. Tolman, C. W. Wright, and E. J. Walsh, 2003: Numerical simulation of sea surface directional wave spectra under hurricane wind forcing. J. Phys. Oceanogr., 33, 16801706, https://doi.org/10.1175/2410.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, I.-J., T. Hara, I. Ginis, S. E. Belcher, and H. L. Tolman, 2004: Effect of surface waves on air–sea momentum exchange. Part I: Effect of mature and growing seas. J. Atmos. Sci., 61, 23212333, https://doi.org/10.1175/1520-0469(2004)061<2321:EOSWOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, I.-J., J.-I. Kwon, J.-C. Lee, J.-S. Shim, S. K. Kang, I. S. Oh, and S. J. Kwon, 2009: Effect of the surface wind stress parameterization on the storm surge modeling. Ocean Modell., 29, 115127, https://doi.org/10.1016/j.ocemod.2009.03.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patton, E. G., P. P. Sullivan, B. Kosović, J. Dudhia, L. Mahrt, M. Žagar, and T. Marić, 2019: On the influence of swell propagation angle on surface drag. J. Appl. Meteor. Climatol., 58, 10391059, https://doi.org/10.1175/JAMC-D-18-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plant, W. J., 1982: A relationship between wind stress and wave slope. J. Geophys. Res., 87, 19611967, https://doi.org/10.1029/JC087iC03p01961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichl, B. G., T. Hara, and I. Ginis, 2014: Sea state dependence of the wind stress over the ocean under hurricane winds. J. Geophys. Res. Oceans, 119, 3051, https://doi.org/10.1002/2013JC009289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, R. L., F. W. Dobson, J. A. Elliott, and R. B. Long, 1981: Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech., 102, 159, https://doi.org/10.1017/S0022112081002528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and E. G. Patton, 2014: Large-eddy simulation of marine atmospheric boundary layers above a spectrum of moving waves. J. Atmos. Sci., 71, 40014027, https://doi.org/10.1175/JAS-D-14-0095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., M. L. Banner, R. P. Morison, and W. L. Peirson, 2018: Turbulent flow over steep steady and unsteady waves under strong wind forcing. J. Phys. Oceanogr., 48, 327, https://doi.org/10.1175/JPO-D-17-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suzuki, N., Y. Toba, and S. Komori, 2010: Examination of drag coefficient with special reference to the windsea Reynolds number: Conditions with counter and mixed swell. J. Oceanogr., 66, 731739, https://doi.org/10.1007/s10872-010-0060-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., and D. Chalikov, 1996: Source terms in a third-generation wind wave model. J. Phys. Oceanogr., 26, 24972518, https://doi.org/10.1175/1520-0485(1996)026<2497:STIATG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, E. J., and Coauthors, 2002: Hurricane directional wave spectrum spatial variation at landfall. J. Phys. Oceanogr., 32, 16671684, https://doi.org/10.1175/1520-0485(2002)032<1667:HDWSSV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, C. W., and Coauthors, 2001: Hurricane directional wave spectrum spatial variation in the open ocean. J. Phys. Oceanogr., 31, 24722488, https://doi.org/10.1175/1520-0485(2001)031<2472:HDWSSV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 349 0 0
Full Text Views 2484 2037 154
PDF Downloads 772 276 12