Investigation of Sea Spray Effect on the Vertical Momentum Transport Using an Eulerian Multifluid-Type Model

Yevgenii Rastigejev aDepartment of Mathematics and Statistics, North Carolina Agricultural and Technical State University, Greensboro, North Carolina
bApplied Science and Technology Ph.D. Program, North Carolina Agricultural and Technical State University, Greensboro, North Carolina

Search for other papers by Yevgenii Rastigejev in
Current site
Google Scholar
PubMed
Close
and
Sergey A. Suslov cSwinburne University of Technology, Hawthorn, Victoria, Australia

Search for other papers by Sergey A. Suslov in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Eulerian multifluid mathematical model is developed to describe the marine atmospheric boundary layer laden with sea spray under the high-wind condition of a hurricane. The model considers spray and air as separate continuous interacting turbulent media and employs the multifluid E–ϵ closure. Each phase is described by its own set of coupled conservation equations and characterized by its own velocity. Such an approach enables us to accurately quantify the interaction between spray and air and pinpoint the effect of spray on the vertical momentum transport much more precisely than could be done with traditional mixture-type approaches. The model consistently quantifies the effect of spray inertia and the suppression of air turbulence due to two different mechanisms: the turbulence attenuation, which results from the inability of spray droplets to fully follow turbulent fluctuations, and the vertical transport of spray against the gravity by turbulent eddies. The results of numerical and asymptotic analyses show that the turbulence suppression by spray overpowers its inertia several meters above wave crests, resulting in a noticeable wind acceleration and the corresponding reduction of the drag coefficient from the reference values for a spray-free atmosphere. This occurs at much lower than predicted previously spray volume fraction values of ∼10−5. The falloff of the drag coefficient from its reference values is more strongly pronounced at higher altitudes. The drag coefficient reaches its maximum at spray volume fraction values of ∼10−4, which is several times smaller than predicted by mixture-type models.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yevgenii Rastigejev, ye_rast@yahoo.com

Abstract

The Eulerian multifluid mathematical model is developed to describe the marine atmospheric boundary layer laden with sea spray under the high-wind condition of a hurricane. The model considers spray and air as separate continuous interacting turbulent media and employs the multifluid E–ϵ closure. Each phase is described by its own set of coupled conservation equations and characterized by its own velocity. Such an approach enables us to accurately quantify the interaction between spray and air and pinpoint the effect of spray on the vertical momentum transport much more precisely than could be done with traditional mixture-type approaches. The model consistently quantifies the effect of spray inertia and the suppression of air turbulence due to two different mechanisms: the turbulence attenuation, which results from the inability of spray droplets to fully follow turbulent fluctuations, and the vertical transport of spray against the gravity by turbulent eddies. The results of numerical and asymptotic analyses show that the turbulence suppression by spray overpowers its inertia several meters above wave crests, resulting in a noticeable wind acceleration and the corresponding reduction of the drag coefficient from the reference values for a spray-free atmosphere. This occurs at much lower than predicted previously spray volume fraction values of ∼10−5. The falloff of the drag coefficient from its reference values is more strongly pronounced at higher altitudes. The drag coefficient reaches its maximum at spray volume fraction values of ∼10−4, which is several times smaller than predicted by mixture-type models.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yevgenii Rastigejev, ye_rast@yahoo.com
Save
  • Andreas, E. L, 1998: A new sea spray generation function for wind speeds up to 32 m s−1. J. Phys. Oceanogr., 28, 21752184, https://doi.org/10.1175/1520-0485(1998)028<2175:ANSSGF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, 2004: Spray stress revisited. J. Phys. Oceanogr., 34, 14291440, https://doi.org/10.1175/1520-0485(2004)034<1429:SSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barenblatt, G. I., 1953: On the motion of suspended droplets in a turbulent flow. Prikl. Mat. Mekh., 7 (3), 261274 .

  • Barenblatt, G. I., and G. S. Golitsyn, 1974: Local structure of mature dust storms. J. Atmos. Sci., 31, 19171933, https://doi.org/10.1175/1520-0469(1974)031<1917:LSOMDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barenblatt, G. I., A. J. Chorin, and V. M. Prostokishin, 2005: A note concerning the Lighthill “sandwich model” of tropical cyclones. Proc. Natl. Acad. Sci. USA, 102, 11 14811 150, https://doi.org/10.1073/pnas.0505209102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bianco, L., J.-W. Bao, C. W. Fairall, and S. A. Michelson, 2011: Impact of sea-spray on the atmospheric surface layer. Bound.-Layer Meteor., 140, 361381, https://doi.org/10.1007/s10546-011-9617-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes. Synthesis of observations from the coupled boundary layer air–sea transfer experiment. Bull. Amer. Meteor. Soc., 88, 357374, https://doi.org/10.1175/BAMS-88-3-357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boussinesq, J., 1897: Théorie de l’écoulement tourbillonnant et tumultueux des liquides dans les lits rectilignes á grande section. Gauthier-Villars et Fils, 84 pp.

    • Search Google Scholar
    • Export Citation
  • Clift, R., J. R. Grace, M. E. Weber, and M. F. Weber, 1978: Bubbles, Drops, and Particles. Academic Press, 380 pp.

  • Csanady, G. T., 1963: Turbulent diffusion of heavy particles in the atmosphere. J. Atmos. Sci., 20, 201208, https://doi.org/10.1175/1520-0469(1963)020<0201:TDOHPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danon, H., M. Wolfshtein, and G. Hetsroni, 1977: Numerical calculations of two-phase turbulent round jet. Int. J. Multiphase Flow, 3, 223234, https://doi.org/10.1016/0301-9322(77)90002-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, https://doi.org/10.1029/2004GL019460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dritselis, C., and N. S. Vlachos, 2008: Numerical study of educed coherent structures in the near-wall region of a particle-laden channel flow. Phys. Fluids, 20, 055103, https://doi.org/10.1063/1.2919108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dritselis, C., and N. S. Vlachos, 2011: Numerical investigation of momentum exchange between particles and coherent structures in low re turbulent channel flow. Phys. Fluids, 23, 025103, https://doi.org/10.1063/1.3553292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Druzhinin, O. A., 1995a: Dynamics of concentration and vorticity modification in a cellular flow laden with solid heavy particles. Phys. Fluids, 7, 21322142, https://doi.org/10.1063/1.868756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Druzhinin, O. A., 1995b: On the two-way interaction in two-dimensional particle-laden flows: The accumulation of particles and flow modification. J. Fluid Mech., 297, 4976, https://doi.org/10.1017/S0022112095003004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eaton, J. K., and J. R. Fessler, 1994: Preferential concentration of particles by turbulence. Int. J. Multiphase Flow, 20, 169209, https://doi.org/10.1016/0301-9322(94)90072-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elghobashi, S. E., and T. Abou-Arab, 1983: A two-equation turbulence model for two-phase flows. Phys. Fluids., 26, 931938, https://doi.org/10.1063/1.864243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., J. D. Kepert, and G. J. Holland, 1994: The effect of sea spray on surface energy transports over the ocean. Global Atmos. Ocean Syst., 2, 121142.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., M. L. Banner, W. L. Peirson, W. Asher, and R. P. Morison, 2009: Investigation of the physical scaling of sea spray spume droplet production. J. Geophys. Res., 114, C10001, https://doi.org/10.1029/2008JC004918.

    • Search Google Scholar
    • Export Citation
  • Gore, R. A., and C. T. Crowe, 1989: Effect of particle size on modulating turbulent intensity. Int. J. Multiphase Flow, 15, 279285, https://doi.org/10.1016/0301-9322(89)90076-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haus, B. K., D. Jeong, M. A. Donelan, J. A. Zhang, and I. Savelyev, 2010: Relative rates of sea–air heat transfer and frictional drag in very high winds. Geophys. Res. Lett., 37, L07802, https://doi.org/10.1029/2009GL042206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, H., Q. Wu, D. Chen, J. Sun, C. Liang, W. Lin, and Y. Xu, 2018: Effects of surface waves and sea spray on air-sea fluxes during the passage of Typhoon Hagupit. Acta Oceanol. Sin., 37, 17, https://doi.org/10.1007/s13131-018-1208-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hetsroni, G., and M. Sokolov, 1971: Distribution of mass, velocity, and intensity of turbulence in a two-phase turbulent jet. J. Appl. Mech., 38, 315327, https://doi.org/10.1115/1.3408779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinze, J. O., 1975: Turbulence. McGraw-Hill, 790 pp.

  • Jakobsen, H. A., 2008: Chemical Reactor Modeling: Multiphase Reactive Flows. Springer, 1244 pp.

  • Kudryavtsev, V. N., 2006: On the effect of sea drops on the atmospheric boundary layer. J. Geophys. Res., 111, C07020 , https://doi.org/10.1029/2005JC002970.

    • Search Google Scholar
    • Export Citation
  • Levy, Y., and F. C. Lockwood, 1981: Velocity measurements in a particle laden turbulent free jet. Combust. Flame, 40, 333339, https://doi.org/10.1016/0010-2180(81)90134-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lighthill, J., 1999: Ocean spray and the thermodynamics of tropical cyclones. J. Eng. Math., 35, 1142, https://doi.org/10.1023/A:1004383430896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ling, S. C., and T. W. Kao, 1976: Parameterization of the moisture and heat transfer process over the ocean under whitecap sea states. J. Phys. Oceanogr., 6, 306315, https://doi.org/10.1175/1520-0485(1976)006<0306:POTMAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, H., A. V. Babanin, and F. Qiao, 2020: Field observations of sea spray under Tropical Cyclone Olwyn. Ocean Dyn., 70, 14391448, https://doi.org/10.1007/s10236-020-01408-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makin, V. K., 2004: A note on the drag of the sea surface at hurricane winds. Bound.-Layer Meteor., 115, 169176, https://doi.org/10.1007/s10546-004-3647-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mestayer, P., and C. Lefauconnier, 1988: Spray droplet generation, transport, and evaporation in a wind wave tunnel during the humidity exchange over the sea experiments in the simulation tunnel. J. Geophys. Res., 93, 572586, https://doi.org/10.1029/JC093iC01p00572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nayfeh, A. H., 2008: Perturbation Methods. Wiley, 437 pp.

  • Olver, F. W. J., D. W. Lozier, R. F. Boisvert, and C. W. Clark, 2010: NIST Handbook of Mathematical Function. Cambridge University Press, 968 pp.

    • Search Google Scholar
    • Export Citation
  • Peng, T., and D. Richter, 2020: Influences of poly-disperse sea spray size distributions on model predictions of air-sea heat fluxes. J. Geophys. Res. Atmos., 125, e2019JD032326, https://doi.org/10.1029/2019JD032326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, https://doi.org/10.1038/nature01481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rastigejev, Y., and S. A. Suslov, 2014: Eε model of spray-laden near-sea atmospheric layer in high wind conditions. J. Phys. Oceanogr., 44, 742763, https://doi.org/10.1175/JPO-D-12-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rastigejev, Y., and S. A. Suslov, 2016: Two-temperature non-equilibrium model of a marine boundary layer laden with evaporating ocean spray under high-wind conditions. J. Phys. Oceanogr., 46, 30833102, https://doi.org/10.1175/JPO-D-16-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rastigejev, Y., and S. A. Suslov, 2019: Effect of evaporating sea spray on heat fluxes in a marine atmospheric boundary layer. J. Phys. Oceanogr., 49, 19271948, https://doi.org/10.1175/JPO-D-18-0240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rastigejev, Y., S. A. Suslov, and Y.-L. Lin, 2011: Effect of ocean spray on vertical momentum transport under high-wind conditions. Bound.-Layer Meteor., 141, 120, https://doi.org/10.1007/s10546-011-9625-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, D., and P. Sullivan, 2013: Momentum transfer in a turbulent, particle-laden Couette flow. Phys. Fluids, 25, 053304, https://doi.org/10.1063/1.4804391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, D., and P. Sullivan, 2014: Modification of near-wall coherent structures by inertial particles. Phys. Fluids, 26, 103304, https://doi.org/10.1063/1.4900583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simonin, O., 1991: Prediction of the dispersed phase turbulence in particle-laden jets. Proceedings of the Fourth International Symposium on Gas-Solid Flows, ASME FED, Vol. 121, American Society of Mechanical Engineers, 197206.

    • Search Google Scholar
    • Export Citation
  • Simonin, O., and P. L. Viollet, 1990: Prediction of an oxygen droplets pulverization in a compressible subsonic coflowing hydrogen flow. Numerical Methods for Multiphase Flows. ASME FED, Vol. 91, American Society of Mechanical Engineers, 7382.

    • Search Google Scholar
    • Export Citation
  • Sun, D., J. Song, X. Li, K. Ren, and H. Leng, 2021: A novel sea surface roughness parameterization based on wave state and sea foam. J. Mar. Sci. Eng., 9, 246, https://doi.org/10.3390/jmse9030246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, S., Z. Yang, C. Liu, Y. H. Dong, and L. Shen, 2017: Numerical study on the generation and transport of spume droplets in wind over breaking waves. Atmosphere, 8, 248, https://doi.org/10.3390/atmos8120248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toffoli, A., A. V. Babanin, M. A. Donelan, B. K. Haus, and D. Jeong, 2011: Estimating sea spray concentration with the laser altimeter. J. Atmos. Oceanic Technol., 28, 11771183, https://doi.org/10.1175/2011JTECHO827.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanderplow, B., A. V. Soloviev, C. W. Dean, B. K. Haus, R. Lukas, M. Sami, and I. Ginis, 2020: Potential effect of bio-surfactants on sea spray generation in tropical cyclone conditions. Sci. Rep., 10, 19057, https://doi.org/10.1038/s41598-020-76226-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Dyke, M., 1964: Perturbation Methods in Fluid Mechanics. Applied Mathematics and Mechanics, Vol. 8, Academic Press, 229 pp.

  • Veron, F., 2015: Ocean spray. Annu. Rev. Fluid Mech., 47, 507538, https://doi.org/10.1146/annurev-fluid-010814-014651.

  • Wamser, C., and V. N. Lykossov, 1995: On the friction velocity during blowing snow. Contrib. Atmos. Phys., 68, 8594.

  • Wilcox, D. C., 2006: Turbulence Modeling for CFD. 3rd ed. DCW Industries, 522 pp.

  • Wu, L., A. Rutgersson, E. Sahlee, and X. G. Larsen, 2015: The impact of waves and sea spray on modelling storm track and development. Tellus, 67A, 27 967, https://doi.org/10.3402/tellusa.v67.27967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yudine, M. I., 1959: Physical considerations on heavy-particle diffusion. Advances in Geophysics, Vol. 6, Academic Press, 185191, https://doi.org/10.1016/S0065-2687(08)60106-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, D., and M. Li, 2019: Dependence of wind stress across an air–sea interface on wave states. J. Oceanogr., 75, 207223, https://doi.org/10.1007/s10872-018-0494-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 300 0 0
Full Text Views 1991 1623 142
PDF Downloads 424 132 5