• Alin, S. R., R. A. Feely, A. G. Dickson, J. M. Hernández‐Ayón, L. W. Juranek, M. D. Ohman, and R. Goericke, 2012: Robust empirical relationships for estimating the carbonate system in the southern California Current System and application to CalCOFI hydrographic cruise data (2005–2011). J. Geophys. Res., 117, C05033, https://doi.org/10.1029/2011JC007511.

    • Search Google Scholar
    • Export Citation
  • Armi, L., D. Hebert, N. Oakey, J. F. Price, P. L. Richardson, H. T. Rossby, and B. Ruddick, 1989: Two years in the life of a Mediterranean salt lens. J. Phys. Oceanogr., 19, 354370, https://doi.org/10.1175/1520-0485(1989)019<0354:TYITLO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bashmachnikov, I., X. Carton, and T. V. Belonenko, 2014: Characteristics of surface signatures of Mediterranean water eddies. J. Geophys. Res. Oceans, 119, 72457266, https://doi.org/10.1002/2014JC010244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bendat, J. S., and A. G. Piersol, 2011: Random Data: Analysis and Measurement Procedures. John Wiley & Sons, 640 pp.

    • Crossref
    • Export Citation
  • Bograd, S. J., I. D. Schroeder, and M. G. Jacox, 2019: A water mass history of the southern California Current System. Geophys. Res. Lett., 46, 66906698, https://doi.org/10.1029/2019GL082685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., R. E. Davis, and C. B. Fandry, 1976: A technique for objective analysis and design of oceanographic experiments applied to MODE-73. Deep-Sea Res. Oceanogr. Abstr., 23, 559582, https://doi.org/10.1016/0011-7471(76)90001-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, X., N. Daniault, J. Alves, L. Cherubin, and I. Ambar, 2010: Meddy dynamics and interaction with neighboring eddies southwest of Portugal: Observations and modeling. J. Geophys. Res., 115, C06017, https://doi.org/10.1029/2009JC005646.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and M. G. Schlax, 1996: Global observations of oceanic Rossby waves. Science, 272, 234238, https://doi.org/10.1126/science.272.5259.234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. deSzoeke, M. G. Schlax, K. E. Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, R. M. Samelson, and R. A. de Szoeke, 2007: Global observations of large oceanic eddies. Geophys. Res. Lett., 34, L15606, https://doi.org/10.1029/2007GL030812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/j.pocean.2011.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chereskin, T. K., and Coauthors, 2000: Spatial and temporal characteristics of the mesoscale circulation of the California Current from eddy-resolving moored and shipboard measurements. J. Geophys. Res., 105, 12451269, https://doi.org/10.1029/1999JC900252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, C. A., T. Margolina, T. A. Rago, and L. Ivanov, 2013: Looping RAFOS floats in the California Current System. Deep-Sea Res. II, 85, 4261, https://doi.org/10.1016/j.dsr2.2012.07.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cornuelle, B. D., T. K. Chereskin, P. P. Niiler, M. Y. Morris, and D. L. Musgrave, 2000: Observations and modeling of a California undercurrent eddy. J. Geophys. Res., 105, 12271243, https://doi.org/10.1029/1999JC900284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., and J.-M. Beckers, 2011: Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects. International Geophysics Series, Vol. 101, Academic Press, 875 pp.

    • Crossref
    • Export Citation
  • D’Asaro, E. A., 1988: Generation of submesoscale vortices: A new mechanism. J. Geophys. Res., 93, 66856693, https://doi.org/10.1029/JC093iC06p06685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, R. E., M. D. Ohman, D. L. Rudnick, and J. T. Sherman, 2008: Glider surveillance of physics and biology in the southern California Current System. Limnol. Oceanogr., 53, 21512168, https://doi.org/10.4319/lo.2008.53.5_part_2.2151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dugan, J. P., R. P. Mied, P. C. Mignerey, and A. F. Schuetz, 1982: Compact, intrathermocline eddies in the Sargasso Sea. J. Geophys. Res., 87, 385393, https://doi.org/10.1029/JC087iC01p00385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flierl, G. R., 1977: The application of linear quasigeostrophic dynamics to Gulf Stream rings. J. Phys. Oceanogr., 7, 365379, https://doi.org/10.1175/1520-0485(1977)007<0365:TAOLQD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frenger, I., and Coauthors, 2018: Biogeochemical role of subsurface coherent eddies in the ocean: Tracer cannonballs, hypoxic storms, and microbial stewpots? Global Biogeochem. Cycles, 32, 226249, https://doi.org/10.1002/2017GB005743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfield, N., C. A. Collins, R. G. Paquette, and E. Carter, 1999: Lagrangian exploration of the California undercurrent, 1992–95. J. Phys. Oceanogr., 29, 560583, https://doi.org/10.1175/1520-0485(1999)029<0560:LEOTCU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.

  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2016: Topographic generation of submesoscale centrifugal instability and energy dissipation. Nat. Commun., 7, 12811, https://doi.org/10.1038/ncomms12811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., T. M. Blacic, and R. E. Todd, 2019: Submesoscale coherent vortices in the Gulf Stream. Geophys. Res. Lett., 46, 27042714, https://doi.org/10.1029/2019GL081919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, H., L.-Y. Oey, W. Johnson, C. Dorman, and R. Hodur, 2007: Model wind over the central and southern California coastal ocean. Mon. Wea. Rev., 135, 19311944, https://doi.org/10.1175/MWR3389.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunkins, K. L., 1974: Subsurface eddies in the Arctic Ocean. Deep-Sea Res. Oceanogr. Abstr., 21, 10171033, https://doi.org/10.1016/0011-7471(74)90064-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huyer, A., J. A. Barth, P. M. Kosro, R. K. Shearman, and R. L. Smith, 1998: Upper-ocean water mass characteristics of the California Current, summer 1993. Deep-Sea Res. II, 45, 14111442, https://doi.org/10.1016/S0967-0645(98)80002-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ienna, F., Y.-H. Jo, and X.-H. Yan, 2014: A new method for tracking meddies by satellite altimetry. J. Atmos. Oceanic Technol., 31, 14341445, https://doi.org/10.1175/JTECH-D-13-00080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivanov, L. M., C. A. Collins, T. M. Margolina, L. I. Piterbarg, and V. N. Eremeev, 2008: On westward transport processes off Central California revealed by RAFOS floats. Geophys. Res. Lett., 35, L18604, https://doi.org/10.1029/2008GL034689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koblinsky, C. J., J. J. Simpson, and T. D. Dickey, 1984: An offshore eddy in the California Current System Part II: Surface manifestation. Prog. Oceanogr., 13, 5169, https://doi.org/10.1016/0079-6611(84)90005-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuragano, T., and M. Kamachi, 2000: Global statistical space-time scales of oceanic variability estimated from the TOPEX/POSEIDON altimeter data. J. Geophys. Res., 105, 955974, https://doi.org/10.1029/1999JC900247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lukas, R., and F. Santiago-Mandujano, 2001: Extreme water mass anomaly observed in the Hawaii Ocean time-series. Geophys. Res. Lett., 28, 29312934, https://doi.org/10.1029/2001GL013099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manley, T. O., and K. Hunkins, 1985: Mesoscale eddies of the Arctic Ocean. J. Geophys. Res., 90, 49114930, https://doi.org/10.1029/JC090iC03p04911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McClatchie, S., 2014: The CalCOFI sampling domain. Regional Fisheries Oceanography of the California Current System: The CalCOFI Program, Springer, 8–11.

    • Crossref
    • Export Citation
  • McDowell, S. E., and H. T. Rossby, 1978: Mediterranean water: An intense mesoscale eddy off the Bahamas. Science, 202, 10851087, https://doi.org/10.1126/science.202.4372.1085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 1985: Submesoscale, coherent vortices in the ocean. Rev. Geophys., 23, 165182, https://doi.org/10.1029/RG023i002p00165.

  • McWilliams, J. C., and G. R. Flierl, 1979: On the evolution of isolated, nonlinear vortices. J. Phys. Oceanogr., 9, 11551182, https://doi.org/10.1175/1520-0485(1979)009<1155:OTEOIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and W. K. Dewar, 2015: Submesoscale instability and generation of mesoscale anticyclones near a separation of the California Undercurrent. J. Phys. Oceanogr., 45, 613629, https://doi.org/10.1175/JPO-D-13-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pelland, N. A., C. C. Eriksen, and C. M. Lee, 2013: Subthermocline eddies over the Washington continental slope as observed by Seagliders, 2003–09. J. Phys. Oceanogr., 43, 20252053, https://doi.org/10.1175/JPO-D-12-086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pujol, M. I., Y. Faugère, G. Taburet, S. Dupuy, C. Pelloquin, M. Ablain, and N. Picot, 2016: DUACS DT2014: The new multi-mission altimeter data set reprocessed over 20 years. Ocean Sci., 12, 10671090, https://doi.org/10.5194/os-12-1067-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, A. S., and D. L. Rudnick, 2021: Temperature and salinity extremes from 2014–2019 in the California Current System and its source waters. Commun. Earth Environ., 2, 62, https://doi.org/10.1038/s43247-021-00131-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, A. R., 1983: Overview and summary of eddy science. Eddies in Marine Science, A. R. Robinson, Ed., Springer, 3–15.

    • Crossref
    • Export Citation
  • Rudnick, D. L., 2016: California Underwater Glider Network. Instrument Development Group, Scripps Institution of Oceanography, https://doi.org/10.21238/S8SPRAY1618.

    • Crossref
    • Export Citation
  • Rudnick, D. L., and S. T. Cole, 2011: On sampling the ocean using underwater gliders. J. Geophys. Res., 116, C08010, https://doi.org/10.1029/2010JC006849.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., R. E. Davis, C. C. Eriksen, D. M. Fratantoni, and M. J. Perry, 2004: Underwater gliders for ocean research. Mar. Technol. Soc. J., 38, 7384, https://doi.org/10.4031/002533204787522703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., K. D. Zaba, R. E. Todd, and R. E. Davis, 2017a: A climatology of the California Current System from a network of underwater gliders. Prog. Oceanogr., 154, 64106, https://doi.org/10.1016/j.pocean.2017.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., K. D. Zaba, R. E. Todd, and R. E. Davis, 2017b: A climatology using data from the California Underwater Glider Network. Instrument Development Group, Scripps Institution of Oceanography, https://doi.org/10.21238/S8SPRAY7292.

    • Crossref
    • Export Citation
  • Rudnick, D. L., J. T. Sherman, and A. P. Wu, 2018: Depth-average velocity from spray underwater gliders. J. Atmos. Oceanic Technol., 35, 16651673, https://doi.org/10.1175/JTECH-D-17-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saraceno, M., P. T. Strub, and P. M. Kosro, 2008: Estimates of sea surface height and near-surface alongshore coastal currents from combinations of altimeters and tide gauges. J. Geophys. Res., 113, C11013, https://doi.org/10.1029/2008JC004756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J. J., T. D. Dickey, and C. J. Koblinsky, 1984: An offshore eddy in the California Current System Part I: Interior dynamics. Prog. Oceanogr., 13, 549, https://doi.org/10.1016/0079-6611(84)90004-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinberg, J. M., N. A. Pelland, and C. C. Eriksen, 2019: Observed evolution of a California undercurrent eddy. J. Phys. Oceanogr., 49, 649674, https://doi.org/10.1175/JPO-D-18-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todd, R. E., D. L. Rudnick, M. R. Mazloff, R. E. Davis, and B. D. Cornuelle, 2011: Poleward flows in the southern California Current System: Glider observations and numerical simulation. J. Geophys. Res., 116, C02026, https://doi.org/10.1029/2010JC006536.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 72 72 72
Full Text Views 32 32 32
PDF Downloads 40 40 40

Across-Shore Propagation of Subthermocline Eddies in the California Current System

View More View Less
  • 1 a Scripps Institution of Oceanography, La Jolla, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Though subthermocline eddies (STEs) have often been observed in the world oceans, characteristics of STEs such as their patterns of generation and propagation are less understood. Here, the across-shore propagation of STEs in the California Current System (CCS) is observed and described using 13 years of sustained coastal glider measurements on three glider transect lines off central and southern California as part of the California Underwater Glider Network (CUGN). The across-shore propagation speed of anticyclonic STEs is estimated as 1.35–1.49 ± 0.33 cm s−1 over the three transects, line 66.7, line 80.0, and line 90.0, close to the westward long first baroclinic Rossby wave speed in the region. Anticyclonic STEs are found with high salinity, high temperature, and low dissolved oxygen anomalies in their cores, consistent with transporting California Undercurrent water from the coast to offshore. Comparisons to satellite sea level anomaly indicate that STEs are only weakly correlated to a sea surface height expression. The observations suggest that STEs are important for the salt balance and mixing of water masses across-shore in the CCS.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alice S. Ren, aren@ucsd.edu

Abstract

Though subthermocline eddies (STEs) have often been observed in the world oceans, characteristics of STEs such as their patterns of generation and propagation are less understood. Here, the across-shore propagation of STEs in the California Current System (CCS) is observed and described using 13 years of sustained coastal glider measurements on three glider transect lines off central and southern California as part of the California Underwater Glider Network (CUGN). The across-shore propagation speed of anticyclonic STEs is estimated as 1.35–1.49 ± 0.33 cm s−1 over the three transects, line 66.7, line 80.0, and line 90.0, close to the westward long first baroclinic Rossby wave speed in the region. Anticyclonic STEs are found with high salinity, high temperature, and low dissolved oxygen anomalies in their cores, consistent with transporting California Undercurrent water from the coast to offshore. Comparisons to satellite sea level anomaly indicate that STEs are only weakly correlated to a sea surface height expression. The observations suggest that STEs are important for the salt balance and mixing of water masses across-shore in the CCS.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alice S. Ren, aren@ucsd.edu
Save